from __future__ import annotations import heapq from collections import deque from dataclasses import dataclass from functools import cached_property from typing import Deque, Dict, FrozenSet, Iterable, List, Optional, Set, Tuple from .pixel_map import PixelMap from .player import Player, Race from .position import Point2, Rect, Size @dataclass class Ramp: points: FrozenSet[Point2] game_info: GameInfo @property def x_offset(self) -> float: # Tested by printing actual building locations vs calculated depot positions return 0.5 @property def y_offset(self) -> float: # Tested by printing actual building locations vs calculated depot positions return 0.5 @cached_property def _height_map(self): return self.game_info.terrain_height @cached_property def size(self) -> int: return len(self.points) def height_at(self, p: Point2) -> int: return self._height_map[p] @cached_property def upper(self) -> FrozenSet[Point2]: """ Returns the upper points of a ramp. """ current_max = -10000 result = set() for p in self.points: height = self.height_at(p) if height > current_max: current_max = height result = {p} elif height == current_max: result.add(p) return frozenset(result) @cached_property def upper2_for_ramp_wall(self) -> FrozenSet[Point2]: """ Returns the 2 upper ramp points of the main base ramp required for the supply depot and barracks placement properties used in this file. """ # From bottom center, find 2 points that are furthest away (within the same ramp) return frozenset(heapq.nlargest(2, self.upper, key=lambda x: x.distance_to_point2(self.bottom_center))) @cached_property def top_center(self) -> Point2: length = len(self.upper) pos = Point2((sum(p.x for p in self.upper) / length, sum(p.y for p in self.upper) / length)) return pos @cached_property def lower(self) -> FrozenSet[Point2]: current_min = 10000 result = set() for p in self.points: height = self.height_at(p) if height < current_min: current_min = height result = {p} elif height == current_min: result.add(p) return frozenset(result) @cached_property def bottom_center(self) -> Point2: length = len(self.lower) pos = Point2((sum(p.x for p in self.lower) / length, sum(p.y for p in self.lower) / length)) return pos @cached_property def barracks_in_middle(self) -> Optional[Point2]: """ Barracks position in the middle of the 2 depots """ if len(self.upper) not in {2, 5}: return None if len(self.upper2_for_ramp_wall) == 2: points = set(self.upper2_for_ramp_wall) p1 = points.pop().offset((self.x_offset, self.y_offset)) p2 = points.pop().offset((self.x_offset, self.y_offset)) # Offset from top point to barracks center is (2, 1) intersects = p1.circle_intersection(p2, 5**0.5) any_lower_point = next(iter(self.lower)) return max(intersects, key=lambda p: p.distance_to_point2(any_lower_point)) raise Exception("Not implemented. Trying to access a ramp that has a wrong amount of upper points.") @cached_property def depot_in_middle(self) -> Optional[Point2]: """ Depot in the middle of the 3 depots """ if len(self.upper) not in {2, 5}: return None if len(self.upper2_for_ramp_wall) == 2: points = set(self.upper2_for_ramp_wall) p1 = points.pop().offset((self.x_offset, self.y_offset)) p2 = points.pop().offset((self.x_offset, self.y_offset)) # Offset from top point to depot center is (1.5, 0.5) try: intersects = p1.circle_intersection(p2, 2.5**0.5) except AssertionError: # Returns None when no placement was found, this is the case on the map Honorgrounds LE with an exceptionally large main base ramp return None any_lower_point = next(iter(self.lower)) return max(intersects, key=lambda p: p.distance_to_point2(any_lower_point)) raise Exception("Not implemented. Trying to access a ramp that has a wrong amount of upper points.") @cached_property def corner_depots(self) -> FrozenSet[Point2]: """ Finds the 2 depot positions on the outside """ if not self.upper2_for_ramp_wall: return frozenset() if len(self.upper2_for_ramp_wall) == 2: points = set(self.upper2_for_ramp_wall) p1 = points.pop().offset((self.x_offset, self.y_offset)) p2 = points.pop().offset((self.x_offset, self.y_offset)) center = p1.towards(p2, p1.distance_to_point2(p2) / 2) depot_position = self.depot_in_middle if depot_position is None: return frozenset() # Offset from middle depot to corner depots is (2, 1) intersects = center.circle_intersection(depot_position, 5**0.5) return intersects raise Exception("Not implemented. Trying to access a ramp that has a wrong amount of upper points.") @cached_property def barracks_can_fit_addon(self) -> bool: """ Test if a barracks can fit an addon at natural ramp """ # https://i.imgur.com/4b2cXHZ.png if len(self.upper2_for_ramp_wall) == 2: return self.barracks_in_middle.x + 1 > max(self.corner_depots, key=lambda depot: depot.x).x raise Exception("Not implemented. Trying to access a ramp that has a wrong amount of upper points.") @cached_property def barracks_correct_placement(self) -> Optional[Point2]: """ Corrected placement so that an addon can fit """ if self.barracks_in_middle is None: return None if len(self.upper2_for_ramp_wall) == 2: if self.barracks_can_fit_addon: return self.barracks_in_middle return self.barracks_in_middle.offset((-2, 0)) raise Exception("Not implemented. Trying to access a ramp that has a wrong amount of upper points.") @cached_property def protoss_wall_pylon(self) -> Optional[Point2]: """ Pylon position that powers the two wall buildings and the warpin position. """ if len(self.upper) not in {2, 5}: return None if len(self.upper2_for_ramp_wall) != 2: raise Exception("Not implemented. Trying to access a ramp that has a wrong amount of upper points.") middle = self.depot_in_middle # direction up the ramp direction = self.barracks_in_middle.negative_offset(middle) return middle + 6 * direction @cached_property def protoss_wall_buildings(self) -> FrozenSet[Point2]: """ List of two positions for 3x3 buildings that form a wall with a spot for a one unit block. These buildings can be powered by a pylon on the protoss_wall_pylon position. """ if len(self.upper) not in {2, 5}: return frozenset() if len(self.upper2_for_ramp_wall) == 2: middle = self.depot_in_middle # direction up the ramp direction = self.barracks_in_middle.negative_offset(middle) # sort depots based on distance to start to get wallin orientation sorted_depots = sorted( self.corner_depots, key=lambda depot: depot.distance_to(self.game_info.player_start_location) ) wall1: Point2 = sorted_depots[1].offset(direction) wall2 = middle + direction + (middle - wall1) / 1.5 return frozenset([wall1, wall2]) raise Exception("Not implemented. Trying to access a ramp that has a wrong amount of upper points.") @cached_property def protoss_wall_warpin(self) -> Optional[Point2]: """ Position for a unit to block the wall created by protoss_wall_buildings. Powered by protoss_wall_pylon. """ if len(self.upper) not in {2, 5}: return None if len(self.upper2_for_ramp_wall) != 2: raise Exception("Not implemented. Trying to access a ramp that has a wrong amount of upper points.") middle = self.depot_in_middle # direction up the ramp direction = self.barracks_in_middle.negative_offset(middle) # sort depots based on distance to start to get wallin orientation sorted_depots = sorted(self.corner_depots, key=lambda x: x.distance_to(self.game_info.player_start_location)) return sorted_depots[0].negative_offset(direction) class GameInfo: def __init__(self, proto): self._proto = proto self.players: List[Player] = [Player.from_proto(p) for p in self._proto.player_info] self.map_name: str = self._proto.map_name self.local_map_path: str = self._proto.local_map_path self.map_size: Size = Size.from_proto(self._proto.start_raw.map_size) # self.pathing_grid[point]: if 0, point is not pathable, if 1, point is pathable self.pathing_grid: PixelMap = PixelMap(self._proto.start_raw.pathing_grid, in_bits=True) # self.terrain_height[point]: returns the height in range of 0 to 255 at that point self.terrain_height: PixelMap = PixelMap(self._proto.start_raw.terrain_height) # self.placement_grid[point]: if 0, point is not placeable, if 1, point is pathable self.placement_grid: PixelMap = PixelMap(self._proto.start_raw.placement_grid, in_bits=True) self.playable_area = Rect.from_proto(self._proto.start_raw.playable_area) self.map_center = self.playable_area.center self.map_ramps: List[Ramp] = None # Filled later by BotAI._prepare_first_step self.vision_blockers: FrozenSet[Point2] = None # Filled later by BotAI._prepare_first_step self.player_races: Dict[int, Race] = { p.player_id: p.race_actual or p.race_requested for p in self._proto.player_info } self.start_locations: List[Point2] = [ Point2.from_proto(sl).round(decimals=1) for sl in self._proto.start_raw.start_locations ] self.player_start_location: Point2 = None # Filled later by BotAI._prepare_first_step def _find_groups(self, points: FrozenSet[Point2], minimum_points_per_group: int = 8) -> Iterable[FrozenSet[Point2]]: """ From a set of points, this function will try to group points together by painting clusters of points in a rectangular map using flood fill algorithm. Returns groups of points as list, like [{p1, p2, p3}, {p4, p5, p6, p7, p8}] """ # TODO do we actually need colors here? the ramps will never touch anyways. NOT_COLORED_YET = -1 map_width = self.pathing_grid.width map_height = self.pathing_grid.height current_color: int = NOT_COLORED_YET picture: List[List[int]] = [[-2 for _ in range(map_width)] for _ in range(map_height)] def paint(pt: Point2) -> None: picture[pt.y][pt.x] = current_color nearby: List[Tuple[int, int]] = [(a, b) for a in [-1, 0, 1] for b in [-1, 0, 1] if a != 0 or b != 0] remaining: Set[Point2] = set(points) for point in remaining: paint(point) current_color = 1 queue: Deque[Point2] = deque() while remaining: current_group: Set[Point2] = set() if not queue: start = remaining.pop() paint(start) queue.append(start) current_group.add(start) while queue: base: Point2 = queue.popleft() for offset in nearby: px, py = base.x + offset[0], base.y + offset[1] # Do we ever reach out of map bounds? if not (0 <= px < map_width and 0 <= py < map_height): continue if picture[py][px] != NOT_COLORED_YET: continue point: Point2 = Point2((px, py)) remaining.discard(point) paint(point) queue.append(point) current_group.add(point) if len(current_group) >= minimum_points_per_group: yield frozenset(current_group)