from __future__ import annotations import copy import itertools import functools import logging import random import secrets import typing # this can go away when Python 3.8 support is dropped from argparse import Namespace from collections import Counter, deque from collections.abc import Collection, MutableSequence from enum import IntEnum, IntFlag from typing import Any, Callable, Dict, Iterable, Iterator, List, NamedTuple, Optional, Set, Tuple, TypedDict, Union, \ Type, ClassVar import NetUtils import Options import Utils class Group(TypedDict, total=False): name: str game: str world: auto_world players: Set[int] item_pool: Set[str] replacement_items: Dict[int, Optional[str]] local_items: Set[str] non_local_items: Set[str] link_replacement: bool class ThreadBarrierProxy: """Passes through getattr while passthrough is True""" def __init__(self, obj: object) -> None: self.passthrough = True self.obj = obj def __getattr__(self, name: str) -> Any: if self.passthrough: return getattr(self.obj, name) else: raise RuntimeError("You are in a threaded context and global random state was removed for your safety. " "Please use multiworld.per_slot_randoms[player] or randomize ahead of output.") class MultiWorld(): debug_types = False player_name: Dict[int, str] difficulty_requirements: dict required_medallions: dict dark_room_logic: Dict[int, str] restrict_dungeon_item_on_boss: Dict[int, bool] plando_texts: List[Dict[str, str]] plando_items: List[List[Dict[str, Any]]] plando_connections: List worlds: Dict[int, auto_world] groups: Dict[int, Group] regions: RegionManager itempool: List[Item] is_race: bool = False precollected_items: Dict[int, List[Item]] state: CollectionState plando_options: PlandoOptions accessibility: Dict[int, Options.Accessibility] early_items: Dict[int, Dict[str, int]] local_early_items: Dict[int, Dict[str, int]] local_items: Dict[int, Options.LocalItems] non_local_items: Dict[int, Options.NonLocalItems] progression_balancing: Dict[int, Options.ProgressionBalancing] completion_condition: Dict[int, Callable[[CollectionState], bool]] indirect_connections: Dict[Region, Set[Entrance]] exclude_locations: Dict[int, Options.ExcludeLocations] priority_locations: Dict[int, Options.PriorityLocations] start_inventory: Dict[int, Options.StartInventory] start_hints: Dict[int, Options.StartHints] start_location_hints: Dict[int, Options.StartLocationHints] item_links: Dict[int, Options.ItemLinks] game: Dict[int, str] random: random.Random per_slot_randoms: Dict[int, random.Random] """Deprecated. Please use `self.random` instead.""" class AttributeProxy(): def __init__(self, rule): self.rule = rule def __getitem__(self, player) -> bool: return self.rule(player) class RegionManager: region_cache: Dict[int, Dict[str, Region]] entrance_cache: Dict[int, Dict[str, Entrance]] location_cache: Dict[int, Dict[str, Location]] def __init__(self, players: int): self.region_cache = {player: {} for player in range(1, players+1)} self.entrance_cache = {player: {} for player in range(1, players+1)} self.location_cache = {player: {} for player in range(1, players+1)} def __iadd__(self, other: Iterable[Region]): self.extend(other) return self def append(self, region: Region): self.region_cache[region.player][region.name] = region def extend(self, regions: Iterable[Region]): for region in regions: self.region_cache[region.player][region.name] = region def add_group(self, new_id: int): self.region_cache[new_id] = {} self.entrance_cache[new_id] = {} self.location_cache[new_id] = {} def __iter__(self) -> Iterator[Region]: for regions in self.region_cache.values(): yield from regions.values() def __len__(self): return sum(len(regions) for regions in self.region_cache.values()) def __init__(self, players: int): # world-local random state is saved for multiple generations running concurrently self.random = ThreadBarrierProxy(random.Random()) self.players = players self.player_types = {player: NetUtils.SlotType.player for player in self.player_ids} self.glitch_triforce = False self.algorithm = 'balanced' self.groups = {} self.regions = self.RegionManager(players) self.shops = [] self.itempool = [] self.seed = None self.seed_name: str = "Unavailable" self.precollected_items = {player: [] for player in self.player_ids} self.required_locations = [] self.light_world_light_cone = False self.dark_world_light_cone = False self.rupoor_cost = 10 self.aga_randomness = True self.save_and_quit_from_boss = True self.custom = False self.customitemarray = [] self.shuffle_ganon = True self.spoiler = Spoiler(self) self.early_items = {player: {} for player in self.player_ids} self.local_early_items = {player: {} for player in self.player_ids} self.indirect_connections = {} self.start_inventory_from_pool: Dict[int, Options.StartInventoryPool] = {} self.fix_trock_doors = self.AttributeProxy( lambda player: self.shuffle[player] != 'vanilla' or self.mode[player] == 'inverted') self.fix_skullwoods_exit = self.AttributeProxy( lambda player: self.shuffle[player] not in ['vanilla', 'simple', 'restricted', 'dungeonssimple']) self.fix_palaceofdarkness_exit = self.AttributeProxy( lambda player: self.shuffle[player] not in ['vanilla', 'simple', 'restricted', 'dungeonssimple']) self.fix_trock_exit = self.AttributeProxy( lambda player: self.shuffle[player] not in ['vanilla', 'simple', 'restricted', 'dungeonssimple']) for player in range(1, players + 1): def set_player_attr(attr, val): self.__dict__.setdefault(attr, {})[player] = val set_player_attr('shuffle', "vanilla") set_player_attr('logic', "noglitches") set_player_attr('mode', 'open') set_player_attr('difficulty', 'normal') set_player_attr('item_functionality', 'normal') set_player_attr('timer', False) set_player_attr('goal', 'ganon') set_player_attr('required_medallions', ['Ether', 'Quake']) set_player_attr('swamp_patch_required', False) set_player_attr('powder_patch_required', False) set_player_attr('ganon_at_pyramid', True) set_player_attr('ganonstower_vanilla', True) set_player_attr('can_access_trock_eyebridge', None) set_player_attr('can_access_trock_front', None) set_player_attr('can_access_trock_big_chest', None) set_player_attr('can_access_trock_middle', None) set_player_attr('fix_fake_world', True) set_player_attr('difficulty_requirements', None) set_player_attr('boss_shuffle', 'none') set_player_attr('enemy_health', 'default') set_player_attr('enemy_damage', 'default') set_player_attr('beemizer_total_chance', 0) set_player_attr('beemizer_trap_chance', 0) set_player_attr('escape_assist', []) set_player_attr('treasure_hunt_icon', 'Triforce Piece') set_player_attr('treasure_hunt_count', 0) set_player_attr('clock_mode', False) set_player_attr('countdown_start_time', 10) set_player_attr('red_clock_time', -2) set_player_attr('blue_clock_time', 2) set_player_attr('green_clock_time', 4) set_player_attr('can_take_damage', True) set_player_attr('triforce_pieces_available', 30) set_player_attr('triforce_pieces_required', 20) set_player_attr('shop_shuffle', 'off') set_player_attr('shuffle_prizes', "g") set_player_attr('sprite_pool', []) set_player_attr('dark_room_logic', "lamp") set_player_attr('plando_items', []) set_player_attr('plando_texts', {}) set_player_attr('plando_connections', []) set_player_attr('game', "A Link to the Past") set_player_attr('completion_condition', lambda state: True) self.worlds = {} self.per_slot_randoms = {} self.plando_options = PlandoOptions.none def get_all_ids(self) -> Tuple[int, ...]: return self.player_ids + tuple(self.groups) def add_group(self, name: str, game: str, players: Set[int] = frozenset()) -> Tuple[int, Group]: """Create a group with name and return the assigned player ID and group. If a group of this name already exists, the set of players is extended instead of creating a new one.""" for group_id, group in self.groups.items(): if group["name"] == name: group["players"] |= players return group_id, group new_id: int = self.players + len(self.groups) + 1 self.regions.add_group(new_id) self.game[new_id] = game self.player_types[new_id] = NetUtils.SlotType.group world_type = AutoWorld.AutoWorldRegister.world_types[game] self.worlds[new_id] = world_type.create_group(self, new_id, players) self.worlds[new_id].collect_item = classmethod(AutoWorld.World.collect_item).__get__(self.worlds[new_id]) self.player_name[new_id] = name new_group = self.groups[new_id] = Group(name=name, game=game, players=players, world=self.worlds[new_id]) return new_id, new_group def get_player_groups(self, player) -> Set[int]: return {group_id for group_id, group in self.groups.items() if player in group["players"]} def set_seed(self, seed: Optional[int] = None, secure: bool = False, name: Optional[str] = None): self.seed = get_seed(seed) if secure: self.secure() else: self.random.seed(self.seed) self.seed_name = name if name else str(self.seed) self.per_slot_randoms = {player: random.Random(self.random.getrandbits(64)) for player in range(1, self.players + 1)} def set_options(self, args: Namespace) -> None: for player in self.player_ids: world_type = AutoWorld.AutoWorldRegister.world_types[self.game[player]] self.worlds[player] = world_type(self, player) self.worlds[player].random = self.per_slot_randoms[player] for option_key in world_type.options_dataclass.type_hints: option_values = getattr(args, option_key, {}) setattr(self, option_key, option_values) # TODO - remove this loop once all worlds use options dataclasses options_dataclass: typing.Type[Options.PerGameCommonOptions] = self.worlds[player].options_dataclass self.worlds[player].options = options_dataclass(**{option_key: getattr(args, option_key)[player] for option_key in options_dataclass.type_hints}) def set_item_links(self): item_links = {} replacement_prio = [False, True, None] for player in self.player_ids: for item_link in self.worlds[player].options.item_links.value: if item_link["name"] in item_links: if item_links[item_link["name"]]["game"] != self.game[player]: raise Exception(f"Cannot ItemLink across games. Link: {item_link['name']}") current_link = item_links[item_link["name"]] current_link["players"][player] = item_link["replacement_item"] current_link["item_pool"] &= set(item_link["item_pool"]) current_link["exclude"] |= set(item_link.get("exclude", [])) current_link["local_items"] &= set(item_link.get("local_items", [])) current_link["non_local_items"] &= set(item_link.get("non_local_items", [])) current_link["link_replacement"] = min(current_link["link_replacement"], replacement_prio.index(item_link["link_replacement"])) else: if item_link["name"] in self.player_name.values(): raise Exception(f"Cannot name a ItemLink group the same as a player ({item_link['name']}) " f"({self.get_player_name(player)}).") item_links[item_link["name"]] = { "players": {player: item_link["replacement_item"]}, "item_pool": set(item_link["item_pool"]), "exclude": set(item_link.get("exclude", [])), "game": self.game[player], "local_items": set(item_link.get("local_items", [])), "non_local_items": set(item_link.get("non_local_items", [])), "link_replacement": replacement_prio.index(item_link["link_replacement"]), } for name, item_link in item_links.items(): current_item_name_groups = AutoWorld.AutoWorldRegister.world_types[item_link["game"]].item_name_groups pool = set() local_items = set() non_local_items = set() for item in item_link["item_pool"]: pool |= current_item_name_groups.get(item, {item}) for item in item_link["exclude"]: pool -= current_item_name_groups.get(item, {item}) for item in item_link["local_items"]: local_items |= current_item_name_groups.get(item, {item}) for item in item_link["non_local_items"]: non_local_items |= current_item_name_groups.get(item, {item}) local_items &= pool non_local_items &= pool item_link["item_pool"] = pool item_link["local_items"] = local_items item_link["non_local_items"] = non_local_items for group_name, item_link in item_links.items(): game = item_link["game"] group_id, group = self.add_group(group_name, game, set(item_link["players"])) group["item_pool"] = item_link["item_pool"] group["replacement_items"] = item_link["players"] group["local_items"] = item_link["local_items"] group["non_local_items"] = item_link["non_local_items"] group["link_replacement"] = replacement_prio[item_link["link_replacement"]] def secure(self): self.random = ThreadBarrierProxy(secrets.SystemRandom()) self.is_race = True @functools.cached_property def player_ids(self) -> Tuple[int, ...]: return tuple(range(1, self.players + 1)) @Utils.cache_self1 def get_game_players(self, game_name: str) -> Tuple[int, ...]: return tuple(player for player in self.player_ids if self.game[player] == game_name) @Utils.cache_self1 def get_game_groups(self, game_name: str) -> Tuple[int, ...]: return tuple(group_id for group_id in self.groups if self.game[group_id] == game_name) @Utils.cache_self1 def get_game_worlds(self, game_name: str): return tuple(world for player, world in self.worlds.items() if player not in self.groups and self.game[player] == game_name) def get_name_string_for_object(self, obj) -> str: return obj.name if self.players == 1 else f'{obj.name} ({self.get_player_name(obj.player)})' def get_player_name(self, player: int) -> str: return self.player_name[player] def get_file_safe_player_name(self, player: int) -> str: return Utils.get_file_safe_name(self.get_player_name(player)) def get_out_file_name_base(self, player: int) -> str: """ the base name (without file extension) for each player's output file for a seed """ return f"AP_{self.seed_name}_P{player}_{self.get_file_safe_player_name(player).replace(' ', '_')}" @functools.cached_property def world_name_lookup(self): return {self.player_name[player_id]: player_id for player_id in self.player_ids} def get_regions(self, player: Optional[int] = None) -> Collection[Region]: return self.regions if player is None else self.regions.region_cache[player].values() def get_region(self, region_name: str, player: int) -> Region: return self.regions.region_cache[player][region_name] def get_entrance(self, entrance_name: str, player: int) -> Entrance: return self.regions.entrance_cache[player][entrance_name] def get_location(self, location_name: str, player: int) -> Location: return self.regions.location_cache[player][location_name] def get_all_state(self, use_cache: bool) -> CollectionState: cached = getattr(self, "_all_state", None) if use_cache and cached: return cached.copy() ret = CollectionState(self) for item in self.itempool: self.worlds[item.player].collect(ret, item) for player in self.player_ids: subworld = self.worlds[player] for item in subworld.get_pre_fill_items(): subworld.collect(ret, item) ret.sweep_for_events() if use_cache: self._all_state = ret return ret def get_items(self) -> List[Item]: return [loc.item for loc in self.get_filled_locations()] + self.itempool def find_item_locations(self, item, player: int, resolve_group_locations: bool = False) -> List[Location]: if resolve_group_locations: player_groups = self.get_player_groups(player) return [location for location in self.get_locations() if location.item and location.item.name == item and location.player not in player_groups and (location.item.player == player or location.item.player in player_groups)] return [location for location in self.get_locations() if location.item and location.item.name == item and location.item.player == player] def find_item(self, item, player: int) -> Location: return next(location for location in self.get_locations() if location.item and location.item.name == item and location.item.player == player) def find_items_in_locations(self, items: Set[str], player: int, resolve_group_locations: bool = False) -> List[Location]: if resolve_group_locations: player_groups = self.get_player_groups(player) return [location for location in self.get_locations() if location.item and location.item.name in items and location.player not in player_groups and (location.item.player == player or location.item.player in player_groups)] return [location for location in self.get_locations() if location.item and location.item.name in items and location.item.player == player] def create_item(self, item_name: str, player: int) -> Item: return self.worlds[player].create_item(item_name) def push_precollected(self, item: Item): self.precollected_items[item.player].append(item) self.state.collect(item, True) def push_item(self, location: Location, item: Item, collect: bool = True): location.item = item item.location = location if collect: self.state.collect(item, location.event, location) logging.debug('Placed %s at %s', item, location) def get_entrances(self, player: Optional[int] = None) -> Iterable[Entrance]: if player is not None: return self.regions.entrance_cache[player].values() return Utils.RepeatableChain(tuple(self.regions.entrance_cache[player].values() for player in self.regions.entrance_cache)) def register_indirect_condition(self, region: Region, entrance: Entrance): """Report that access to this Region can result in unlocking this Entrance, state.can_reach(Region) in the Entrance's traversal condition, as opposed to pure transition logic.""" self.indirect_connections.setdefault(region, set()).add(entrance) def get_locations(self, player: Optional[int] = None) -> Iterable[Location]: if player is not None: return self.regions.location_cache[player].values() return Utils.RepeatableChain(tuple(self.regions.location_cache[player].values() for player in self.regions.location_cache)) def get_unfilled_locations(self, player: Optional[int] = None) -> List[Location]: return [location for location in self.get_locations(player) if location.item is None] def get_filled_locations(self, player: Optional[int] = None) -> List[Location]: return [location for location in self.get_locations(player) if location.item is not None] def get_reachable_locations(self, state: Optional[CollectionState] = None, player: Optional[int] = None) -> List[Location]: state: CollectionState = state if state else self.state return [location for location in self.get_locations(player) if location.can_reach(state)] def get_placeable_locations(self, state=None, player=None) -> List[Location]: state: CollectionState = state if state else self.state return [location for location in self.get_locations(player) if location.item is None and location.can_reach(state)] def get_unfilled_locations_for_players(self, location_names: List[str], players: Iterable[int]): for player in players: if not location_names: valid_locations = [location.name for location in self.get_unfilled_locations(player)] else: valid_locations = location_names relevant_cache = self.regions.location_cache[player] for location_name in valid_locations: location = relevant_cache.get(location_name, None) if location and location.item is None: yield location def unlocks_new_location(self, item: Item) -> bool: temp_state = self.state.copy() temp_state.collect(item, True) for location in self.get_unfilled_locations(item.player): if temp_state.can_reach(location) and not self.state.can_reach(location): return True return False def has_beaten_game(self, state: CollectionState, player: Optional[int] = None) -> bool: if player: return self.completion_condition[player](state) else: return all((self.has_beaten_game(state, p) for p in range(1, self.players + 1))) def can_beat_game(self, starting_state: Optional[CollectionState] = None) -> bool: if starting_state: if self.has_beaten_game(starting_state): return True state = starting_state.copy() else: if self.has_beaten_game(self.state): return True state = CollectionState(self) prog_locations = {location for location in self.get_locations() if location.item and location.item.advancement and location not in state.locations_checked} while prog_locations: sphere: Set[Location] = set() # build up spheres of collection radius. # Everything in each sphere is independent from each other in dependencies and only depends on lower spheres for location in prog_locations: if location.can_reach(state): sphere.add(location) if not sphere: # ran out of places and did not finish yet, quit return False for location in sphere: state.collect(location.item, True, location) prog_locations -= sphere if self.has_beaten_game(state): return True return False def get_spheres(self) -> Iterator[Set[Location]]: """ yields a set of locations for each logical sphere If there are unreachable locations, the last sphere of reachable locations is followed by an empty set, and then a set of all of the unreachable locations. """ state = CollectionState(self) locations = set(self.get_filled_locations()) while locations: sphere: Set[Location] = set() for location in locations: if location.can_reach(state): sphere.add(location) yield sphere if not sphere: if locations: yield locations # unreachable locations break for location in sphere: state.collect(location.item, True, location) locations -= sphere def fulfills_accessibility(self, state: Optional[CollectionState] = None): """Check if accessibility rules are fulfilled with current or supplied state.""" if not state: state = CollectionState(self) players: Dict[str, Set[int]] = { "minimal": set(), "items": set(), "locations": set() } for player, access in self.accessibility.items(): players[access.current_key].add(player) beatable_fulfilled = False def location_condition(location: Location): """Determine if this location has to be accessible, location is already filtered by location_relevant""" if location.player in players["minimal"]: return False return True def location_relevant(location: Location): """Determine if this location is relevant to sweep.""" if location.progress_type != LocationProgressType.EXCLUDED \ and (location.player in players["locations"] or location.event or (location.item and location.item.advancement)): return True return False def all_done() -> bool: """Check if all access rules are fulfilled""" if not beatable_fulfilled: return False if any(location_condition(location) for location in locations): return False # still locations required to be collected return True locations = [location for location in self.get_locations() if location_relevant(location)] while locations: sphere: List[Location] = [] for n in range(len(locations) - 1, -1, -1): if locations[n].can_reach(state): sphere.append(locations.pop(n)) if not sphere: # ran out of places and did not finish yet, quit logging.warning(f"Could not access required locations for accessibility check." f" Missing: {locations}") return False for location in sphere: if location.item: state.collect(location.item, True, location) if self.has_beaten_game(state): beatable_fulfilled = True if all_done(): return True return False PathValue = Tuple[str, Optional["PathValue"]] class CollectionState(): prog_items: Dict[int, Counter[str]] multiworld: MultiWorld reachable_regions: Dict[int, Set[Region]] blocked_connections: Dict[int, Set[Entrance]] events: Set[Location] path: Dict[Union[Region, Entrance], PathValue] locations_checked: Set[Location] stale: Dict[int, bool] additional_init_functions: List[Callable[[CollectionState, MultiWorld], None]] = [] additional_copy_functions: List[Callable[[CollectionState, CollectionState], CollectionState]] = [] def __init__(self, parent: MultiWorld): self.prog_items = {player: Counter() for player in parent.get_all_ids()} self.multiworld = parent self.reachable_regions = {player: set() for player in parent.get_all_ids()} self.blocked_connections = {player: set() for player in parent.get_all_ids()} self.events = set() self.path = {} self.locations_checked = set() self.stale = {player: True for player in parent.get_all_ids()} for function in self.additional_init_functions: function(self, parent) for items in parent.precollected_items.values(): for item in items: self.collect(item, True) def update_reachable_regions(self, player: int): self.stale[player] = False rrp = self.reachable_regions[player] bc = self.blocked_connections[player] queue = deque(self.blocked_connections[player]) start = self.multiworld.get_region('Menu', player) # init on first call - this can't be done on construction since the regions don't exist yet if start not in rrp: rrp.add(start) bc.update(start.exits) queue.extend(start.exits) # run BFS on all connections, and keep track of those blocked by missing items while queue: connection = queue.popleft() new_region = connection.connected_region if new_region in rrp: bc.remove(connection) elif connection.can_reach(self): assert new_region, f"tried to search through an Entrance \"{connection}\" with no Region" rrp.add(new_region) bc.remove(connection) bc.update(new_region.exits) queue.extend(new_region.exits) self.path[new_region] = (new_region.name, self.path.get(connection, None)) # Retry connections if the new region can unblock them for new_entrance in self.multiworld.indirect_connections.get(new_region, set()): if new_entrance in bc and new_entrance not in queue: queue.append(new_entrance) def copy(self) -> CollectionState: ret = CollectionState(self.multiworld) ret.prog_items = copy.deepcopy(self.prog_items) ret.reachable_regions = {player: copy.copy(self.reachable_regions[player]) for player in self.reachable_regions} ret.blocked_connections = {player: copy.copy(self.blocked_connections[player]) for player in self.blocked_connections} ret.events = copy.copy(self.events) ret.path = copy.copy(self.path) ret.locations_checked = copy.copy(self.locations_checked) for function in self.additional_copy_functions: ret = function(self, ret) return ret def can_reach(self, spot: Union[Location, Entrance, Region, str], resolution_hint: Optional[str] = None, player: Optional[int] = None) -> bool: if isinstance(spot, str): assert isinstance(player, int), "can_reach: player is required if spot is str" # try to resolve a name if resolution_hint == 'Location': spot = self.multiworld.get_location(spot, player) elif resolution_hint == 'Entrance': spot = self.multiworld.get_entrance(spot, player) else: # default to Region spot = self.multiworld.get_region(spot, player) return spot.can_reach(self) def sweep_for_events(self, key_only: bool = False, locations: Optional[Iterable[Location]] = None) -> None: if locations is None: locations = self.multiworld.get_filled_locations() reachable_events = True # since the loop has a good chance to run more than once, only filter the events once locations = {location for location in locations if location.event and location not in self.events and not key_only or getattr(location.item, "locked_dungeon_item", False)} while reachable_events: reachable_events = {location for location in locations if location.can_reach(self)} locations -= reachable_events for event in reachable_events: self.events.add(event) assert isinstance(event.item, Item), "tried to collect Event with no Item" self.collect(event.item, True, event) # item name related def has(self, item: str, player: int, count: int = 1) -> bool: return self.prog_items[player][item] >= count def has_all(self, items: Iterable[str], player: int) -> bool: """Returns True if each item name of items is in state at least once.""" return all(self.prog_items[player][item] for item in items) def has_any(self, items: Iterable[str], player: int) -> bool: """Returns True if at least one item name of items is in state at least once.""" return any(self.prog_items[player][item] for item in items) def count(self, item: str, player: int) -> int: return self.prog_items[player][item] def item_count(self, item: str, player: int) -> int: Utils.deprecate("Use count instead.") return self.count(item, player) # item name group related def has_group(self, item_name_group: str, player: int, count: int = 1) -> bool: found: int = 0 player_prog_items = self.prog_items[player] for item_name in self.multiworld.worlds[player].item_name_groups[item_name_group]: found += player_prog_items[item_name] if found >= count: return True return False def count_group(self, item_name_group: str, player: int) -> int: found: int = 0 player_prog_items = self.prog_items[player] for item_name in self.multiworld.worlds[player].item_name_groups[item_name_group]: found += player_prog_items[item_name] return found # Item related def collect(self, item: Item, event: bool = False, location: Optional[Location] = None) -> bool: if location: self.locations_checked.add(location) changed = self.multiworld.worlds[item.player].collect(self, item) if not changed and event: self.prog_items[item.player][item.name] += 1 changed = True self.stale[item.player] = True if changed and not event: self.sweep_for_events() return changed def remove(self, item: Item): changed = self.multiworld.worlds[item.player].remove(self, item) if changed: # invalidate caches, nothing can be trusted anymore now self.reachable_regions[item.player] = set() self.blocked_connections[item.player] = set() self.stale[item.player] = True class Entrance: access_rule: Callable[[CollectionState], bool] = staticmethod(lambda state: True) hide_path: bool = False player: int name: str parent_region: Optional[Region] connected_region: Optional[Region] = None # LttP specific, TODO: should make a LttPEntrance addresses = None target = None def __init__(self, player: int, name: str = '', parent: Region = None): self.name = name self.parent_region = parent self.player = player def can_reach(self, state: CollectionState) -> bool: if self.parent_region.can_reach(state) and self.access_rule(state): if not self.hide_path and not self in state.path: state.path[self] = (self.name, state.path.get(self.parent_region, (self.parent_region.name, None))) return True return False def connect(self, region: Region, addresses: Any = None, target: Any = None) -> None: self.connected_region = region self.target = target self.addresses = addresses region.entrances.append(self) def __repr__(self): return self.__str__() def __str__(self): world = self.parent_region.multiworld if self.parent_region else None return world.get_name_string_for_object(self) if world else f'{self.name} (Player {self.player})' class Region: name: str _hint_text: str player: int multiworld: Optional[MultiWorld] entrances: List[Entrance] exits: List[Entrance] locations: List[Location] entrance_type: ClassVar[Type[Entrance]] = Entrance class Register(MutableSequence): region_manager: MultiWorld.RegionManager def __init__(self, region_manager: MultiWorld.RegionManager): self._list = [] self.region_manager = region_manager def __getitem__(self, index: int) -> Location: return self._list.__getitem__(index) def __setitem__(self, index: int, value: Location) -> None: raise NotImplementedError() def __len__(self) -> int: return self._list.__len__() # This seems to not be needed, but that's a bit suspicious. # def __del__(self): # self.clear() def copy(self): return self._list.copy() class LocationRegister(Register): def __delitem__(self, index: int) -> None: location: Location = self._list.__getitem__(index) self._list.__delitem__(index) del(self.region_manager.location_cache[location.player][location.name]) def insert(self, index: int, value: Location) -> None: self._list.insert(index, value) self.region_manager.location_cache[value.player][value.name] = value class EntranceRegister(Register): def __delitem__(self, index: int) -> None: entrance: Entrance = self._list.__getitem__(index) self._list.__delitem__(index) del(self.region_manager.entrance_cache[entrance.player][entrance.name]) def insert(self, index: int, value: Entrance) -> None: self._list.insert(index, value) self.region_manager.entrance_cache[value.player][value.name] = value _locations: LocationRegister[Location] _exits: EntranceRegister[Entrance] def __init__(self, name: str, player: int, multiworld: MultiWorld, hint: Optional[str] = None): self.name = name self.entrances = [] self._exits = self.EntranceRegister(multiworld.regions) self._locations = self.LocationRegister(multiworld.regions) self.multiworld = multiworld self._hint_text = hint self.player = player def get_locations(self): return self._locations def set_locations(self, new): if new is self._locations: return self._locations.clear() self._locations.extend(new) locations = property(get_locations, set_locations) def get_exits(self): return self._exits def set_exits(self, new): if new is self._exits: return self._exits.clear() self._exits.extend(new) exits = property(get_exits, set_exits) def can_reach(self, state: CollectionState) -> bool: if state.stale[self.player]: state.update_reachable_regions(self.player) return self in state.reachable_regions[self.player] @property def hint_text(self) -> str: return self._hint_text if self._hint_text else self.name def get_connecting_entrance(self, is_main_entrance: Callable[[Entrance], bool]) -> Entrance: for entrance in self.entrances: if is_main_entrance(entrance): return entrance for entrance in self.entrances: # BFS might be better here, trying DFS for now. return entrance.parent_region.get_connecting_entrance(is_main_entrance) def add_locations(self, locations: Dict[str, Optional[int]], location_type: Optional[Type[Location]] = None) -> None: """ Adds locations to the Region object, where location_type is your Location class and locations is a dict of location names to address. :param locations: dictionary of locations to be created and added to this Region `{name: ID}` :param location_type: Location class to be used to create the locations with""" if location_type is None: location_type = Location for location, address in locations.items(): self.locations.append(location_type(self.player, location, address, self)) def connect(self, connecting_region: Region, name: Optional[str] = None, rule: Optional[Callable[[CollectionState], bool]] = None) -> entrance_type: """ Connects this Region to another Region, placing the provided rule on the connection. :param connecting_region: Region object to connect to path is `self -> exiting_region` :param name: name of the connection being created :param rule: callable to determine access of this connection to go from self to the exiting_region""" exit_ = self.create_exit(name if name else f"{self.name} -> {connecting_region.name}") if rule: exit_.access_rule = rule exit_.connect(connecting_region) return exit_ def create_exit(self, name: str) -> Entrance: """ Creates and returns an Entrance object as an exit of this region. :param name: name of the Entrance being created """ exit_ = self.entrance_type(self.player, name, self) self.exits.append(exit_) return exit_ def add_exits(self, exits: Union[Iterable[str], Dict[str, Optional[str]]], rules: Dict[str, Callable[[CollectionState], bool]] = None) -> None: """ Connects current region to regions in exit dictionary. Passed region names must exist first. :param exits: exits from the region. format is {"connecting_region": "exit_name"}. if a non dict is provided, created entrances will be named "self.name -> connecting_region" :param rules: rules for the exits from this region. format is {"connecting_region", rule} """ if not isinstance(exits, Dict): exits = dict.fromkeys(exits) for connecting_region, name in exits.items(): self.connect(self.multiworld.get_region(connecting_region, self.player), name, rules[connecting_region] if rules and connecting_region in rules else None) def __repr__(self): return self.__str__() def __str__(self): return self.multiworld.get_name_string_for_object(self) if self.multiworld else f'{self.name} (Player {self.player})' class LocationProgressType(IntEnum): DEFAULT = 1 PRIORITY = 2 EXCLUDED = 3 class Location: game: str = "Generic" player: int name: str address: Optional[int] parent_region: Optional[Region] event: bool = False locked: bool = False show_in_spoiler: bool = True progress_type: LocationProgressType = LocationProgressType.DEFAULT always_allow = staticmethod(lambda item, state: False) access_rule: Callable[[CollectionState], bool] = staticmethod(lambda state: True) item_rule = staticmethod(lambda item: True) item: Optional[Item] = None def __init__(self, player: int, name: str = '', address: Optional[int] = None, parent: Optional[Region] = None): self.player = player self.name = name self.address = address self.parent_region = parent def can_fill(self, state: CollectionState, item: Item, check_access=True) -> bool: return ((self.always_allow(state, item) and item.name not in state.multiworld.non_local_items[item.player]) or ((self.progress_type != LocationProgressType.EXCLUDED or not (item.advancement or item.useful)) and self.item_rule(item) and (not check_access or self.can_reach(state)))) def can_reach(self, state: CollectionState) -> bool: # self.access_rule computes faster on average, so placing it first for faster abort assert self.parent_region, "Can't reach location without region" return self.access_rule(state) and self.parent_region.can_reach(state) def place_locked_item(self, item: Item): if self.item: raise Exception(f"Location {self} already filled.") self.item = item item.location = self self.event = item.advancement self.locked = True def __repr__(self): return self.__str__() def __str__(self): world = self.parent_region.multiworld if self.parent_region and self.parent_region.multiworld else None return world.get_name_string_for_object(self) if world else f'{self.name} (Player {self.player})' def __hash__(self): return hash((self.name, self.player)) def __lt__(self, other: Location): return (self.player, self.name) < (other.player, other.name) @property def native_item(self) -> bool: """Returns True if the item in this location matches game.""" return self.item and self.item.game == self.game @property def hint_text(self) -> str: hint_text = getattr(self, "_hint_text", None) if hint_text: return hint_text return "at " + self.name.replace("_", " ").replace("-", " ") class ItemClassification(IntFlag): filler = 0b0000 # aka trash, as in filler items like ammo, currency etc, progression = 0b0001 # Item that is logically relevant useful = 0b0010 # Item that is generally quite useful, but not required for anything logical trap = 0b0100 # detrimental or entirely useless (nothing) item skip_balancing = 0b1000 # should technically never occur on its own # Item that is logically relevant, but progression balancing should not touch. # Typically currency or other counted items. progression_skip_balancing = 0b1001 # only progression gets balanced def as_flag(self) -> int: """As Network API flag int.""" return int(self & 0b0111) class Item: game: str = "Generic" __slots__ = ("name", "classification", "code", "player", "location") name: str classification: ItemClassification code: Optional[int] """an item with code None is called an Event, and does not get written to multidata""" player: int location: Optional[Location] def __init__(self, name: str, classification: ItemClassification, code: Optional[int], player: int): self.name = name self.classification = classification self.player = player self.code = code self.location = None @property def hint_text(self) -> str: return getattr(self, "_hint_text", self.name.replace("_", " ").replace("-", " ")) @property def pedestal_hint_text(self) -> str: return getattr(self, "_pedestal_hint_text", self.name.replace("_", " ").replace("-", " ")) @property def advancement(self) -> bool: return ItemClassification.progression in self.classification @property def skip_in_prog_balancing(self) -> bool: return ItemClassification.progression_skip_balancing in self.classification @property def useful(self) -> bool: return ItemClassification.useful in self.classification @property def trap(self) -> bool: return ItemClassification.trap in self.classification @property def flags(self) -> int: return self.classification.as_flag() def __eq__(self, other: object) -> bool: if not isinstance(other, Item): return NotImplemented return self.name == other.name and self.player == other.player def __lt__(self, other: object) -> bool: if not isinstance(other, Item): return NotImplemented if other.player != self.player: return other.player < self.player return self.name < other.name def __hash__(self) -> int: return hash((self.name, self.player)) def __repr__(self) -> str: return self.__str__() def __str__(self) -> str: if self.location and self.location.parent_region and self.location.parent_region.multiworld: return self.location.parent_region.multiworld.get_name_string_for_object(self) return f"{self.name} (Player {self.player})" class EntranceInfo(TypedDict, total=False): player: int entrance: str exit: str direction: str class Spoiler: multiworld: MultiWorld hashes: Dict[int, str] entrances: Dict[Tuple[str, str, int], EntranceInfo] playthrough: Dict[str, Union[List[str], Dict[str, str]]] # sphere "0" is list, others are dict unreachables: Set[Location] paths: Dict[str, List[Union[Tuple[str, str], Tuple[str, None]]]] # last step takes no further exits def __init__(self, multiworld: MultiWorld) -> None: self.multiworld = multiworld self.hashes = {} self.entrances = {} self.playthrough = {} self.unreachables = set() self.paths = {} def set_entrance(self, entrance: str, exit_: str, direction: str, player: int) -> None: if self.multiworld.players == 1: self.entrances[(entrance, direction, player)] = \ {"entrance": entrance, "exit": exit_, "direction": direction} else: self.entrances[(entrance, direction, player)] = \ {"player": player, "entrance": entrance, "exit": exit_, "direction": direction} def create_playthrough(self, create_paths: bool = True) -> None: """Destructive to the world while it is run, damage gets repaired afterwards.""" from itertools import chain # get locations containing progress items multiworld = self.multiworld prog_locations = {location for location in multiworld.get_filled_locations() if location.item.advancement} state_cache: List[Optional[CollectionState]] = [None] collection_spheres: List[Set[Location]] = [] state = CollectionState(multiworld) sphere_candidates = set(prog_locations) logging.debug('Building up collection spheres.') while sphere_candidates: # build up spheres of collection radius. # Everything in each sphere is independent from each other in dependencies and only depends on lower spheres sphere = {location for location in sphere_candidates if state.can_reach(location)} for location in sphere: state.collect(location.item, True, location) sphere_candidates -= sphere collection_spheres.append(sphere) state_cache.append(state.copy()) logging.debug('Calculated sphere %i, containing %i of %i progress items.', len(collection_spheres), len(sphere), len(prog_locations)) if not sphere: logging.debug('The following items could not be reached: %s', ['%s (Player %d) at %s (Player %d)' % ( location.item.name, location.item.player, location.name, location.player) for location in sphere_candidates]) if any([multiworld.accessibility[location.item.player] != 'minimal' for location in sphere_candidates]): raise RuntimeError(f'Not all progression items reachable ({sphere_candidates}). ' f'Something went terribly wrong here.') else: self.unreachables = sphere_candidates break # in the second phase, we cull each sphere such that the game is still beatable, # reducing each range of influence to the bare minimum required inside it restore_later = {} for num, sphere in reversed(tuple(enumerate(collection_spheres))): to_delete = set() for location in sphere: # we remove the item at location and check if game is still beatable logging.debug('Checking if %s (Player %d) is required to beat the game.', location.item.name, location.item.player) old_item = location.item location.item = None if multiworld.can_beat_game(state_cache[num]): to_delete.add(location) restore_later[location] = old_item else: # still required, got to keep it around location.item = old_item # cull entries in spheres for spoiler walkthrough at end sphere -= to_delete # second phase, sphere 0 removed_precollected = [] for item in (i for i in chain.from_iterable(multiworld.precollected_items.values()) if i.advancement): logging.debug('Checking if %s (Player %d) is required to beat the game.', item.name, item.player) multiworld.precollected_items[item.player].remove(item) multiworld.state.remove(item) if not multiworld.can_beat_game(): multiworld.push_precollected(item) else: removed_precollected.append(item) # we are now down to just the required progress items in collection_spheres. Unfortunately # the previous pruning stage could potentially have made certain items dependant on others # in the same or later sphere (because the location had 2 ways to access but the item originally # used to access it was deemed not required.) So we need to do one final sphere collection pass # to build up the correct spheres required_locations = {item for sphere in collection_spheres for item in sphere} state = CollectionState(multiworld) collection_spheres = [] while required_locations: state.sweep_for_events(key_only=True) sphere = set(filter(state.can_reach, required_locations)) for location in sphere: state.collect(location.item, True, location) required_locations -= sphere collection_spheres.append(sphere) logging.debug('Calculated final sphere %i, containing %i of %i progress items.', len(collection_spheres), len(sphere), len(required_locations)) if not sphere: raise RuntimeError(f'Not all required items reachable. Unreachable locations: {required_locations}') # we can finally output our playthrough self.playthrough = {"0": sorted([self.multiworld.get_name_string_for_object(item) for item in chain.from_iterable(multiworld.precollected_items.values()) if item.advancement])} for i, sphere in enumerate(collection_spheres): self.playthrough[str(i + 1)] = { str(location): str(location.item) for location in sorted(sphere)} if create_paths: self.create_paths(state, collection_spheres) # repair the multiworld again for location, item in restore_later.items(): location.item = item for item in removed_precollected: multiworld.push_precollected(item) def create_paths(self, state: CollectionState, collection_spheres: List[Set[Location]]) -> None: from itertools import zip_longest multiworld = self.multiworld def flist_to_iter(path_value: Optional[PathValue]) -> Iterator[str]: while path_value: region_or_entrance, path_value = path_value yield region_or_entrance def get_path(state: CollectionState, region: Region) -> List[Union[Tuple[str, str], Tuple[str, None]]]: reversed_path_as_flist: PathValue = state.path.get(region, (str(region), None)) string_path_flat = reversed(list(map(str, flist_to_iter(reversed_path_as_flist)))) # Now we combine the flat string list into (region, exit) pairs pathsiter = iter(string_path_flat) pathpairs = zip_longest(pathsiter, pathsiter) return list(pathpairs) self.paths = {} topology_worlds = (player for player in multiworld.player_ids if multiworld.worlds[player].topology_present) for player in topology_worlds: self.paths.update( {str(location): get_path(state, location.parent_region) for sphere in collection_spheres for location in sphere if location.player == player}) if player in multiworld.get_game_players("A Link to the Past"): # If Pyramid Fairy Entrance needs to be reached, also path to Big Bomb Shop # Maybe move the big bomb over to the Event system instead? if any(exit_path == 'Pyramid Fairy' for path in self.paths.values() for (_, exit_path) in path): if multiworld.mode[player] != 'inverted': self.paths[str(multiworld.get_region('Big Bomb Shop', player))] = \ get_path(state, multiworld.get_region('Big Bomb Shop', player)) else: self.paths[str(multiworld.get_region('Inverted Big Bomb Shop', player))] = \ get_path(state, multiworld.get_region('Inverted Big Bomb Shop', player)) def to_file(self, filename: str) -> None: def write_option(option_key: str, option_obj: Options.AssembleOptions) -> None: res = getattr(self.multiworld.worlds[player].options, option_key) display_name = getattr(option_obj, "display_name", option_key) outfile.write(f"{display_name + ':':33}{res.current_option_name}\n") with open(filename, 'w', encoding="utf-8-sig") as outfile: outfile.write( 'Archipelago Version %s - Seed: %s\n\n' % ( Utils.__version__, self.multiworld.seed)) outfile.write('Filling Algorithm: %s\n' % self.multiworld.algorithm) outfile.write('Players: %d\n' % self.multiworld.players) outfile.write(f'Plando Options: {self.multiworld.plando_options}\n') AutoWorld.call_stage(self.multiworld, "write_spoiler_header", outfile) for player in range(1, self.multiworld.players + 1): if self.multiworld.players > 1: outfile.write('\nPlayer %d: %s\n' % (player, self.multiworld.get_player_name(player))) outfile.write('Game: %s\n' % self.multiworld.game[player]) for f_option, option in self.multiworld.worlds[player].options_dataclass.type_hints.items(): write_option(f_option, option) AutoWorld.call_single(self.multiworld, "write_spoiler_header", player, outfile) if self.entrances: outfile.write('\n\nEntrances:\n\n') outfile.write('\n'.join(['%s%s %s %s' % (f'{self.multiworld.get_player_name(entry["player"])}: ' if self.multiworld.players > 1 else '', entry['entrance'], '<=>' if entry['direction'] == 'both' else '<=' if entry['direction'] == 'exit' else '=>', entry['exit']) for entry in self.entrances.values()])) AutoWorld.call_all(self.multiworld, "write_spoiler", outfile) locations = [(str(location), str(location.item) if location.item is not None else "Nothing") for location in self.multiworld.get_locations() if location.show_in_spoiler] outfile.write('\n\nLocations:\n\n') outfile.write('\n'.join( ['%s: %s' % (location, item) for location, item in locations])) outfile.write('\n\nPlaythrough:\n\n') outfile.write('\n'.join(['%s: {\n%s\n}' % (sphere_nr, '\n'.join( [f" {location}: {item}" for (location, item) in sphere.items()] if isinstance(sphere, dict) else [f" {item}" for item in sphere])) for (sphere_nr, sphere) in self.playthrough.items()])) if self.unreachables: outfile.write('\n\nUnreachable Items:\n\n') outfile.write( '\n'.join(['%s: %s' % (unreachable.item, unreachable) for unreachable in self.unreachables])) if self.paths: outfile.write('\n\nPaths:\n\n') path_listings = [] for location, path in sorted(self.paths.items()): path_lines = [] for region, exit in path: if exit is not None: path_lines.append("{} -> {}".format(region, exit)) else: path_lines.append(region) path_listings.append("{}\n {}".format(location, "\n => ".join(path_lines))) outfile.write('\n'.join(path_listings)) AutoWorld.call_all(self.multiworld, "write_spoiler_end", outfile) class Tutorial(NamedTuple): """Class to build website tutorial pages from a .md file in the world's /docs folder. Order is as follows. Name of the tutorial as it will appear on the site. Concise description covering what the guide will entail. Language the guide is written in. Name of the file ex 'setup_en.md'. Name of the link on the site; game name is filled automatically so 'setup/en' etc. Author or authors.""" tutorial_name: str description: str language: str file_name: str link: str authors: List[str] class PlandoOptions(IntFlag): none = 0b0000 items = 0b0001 connections = 0b0010 texts = 0b0100 bosses = 0b1000 @classmethod def from_option_string(cls, option_string: str) -> PlandoOptions: result = cls(0) for part in option_string.split(","): part = part.strip().lower() if part: result = cls._handle_part(part, result) return result @classmethod def from_set(cls, option_set: Set[str]) -> PlandoOptions: result = cls(0) for part in option_set: result = cls._handle_part(part, result) return result @classmethod def _handle_part(cls, part: str, base: PlandoOptions) -> PlandoOptions: try: return base | cls[part] except Exception as e: raise KeyError(f"{part} is not a recognized name for a plando module. " f"Known options: {', '.join(str(flag.name) for flag in cls)}") from e def __str__(self) -> str: if self.value: return ", ".join(str(flag.name) for flag in PlandoOptions if self.value & flag.value) return "None" seeddigits = 20 def get_seed(seed: Optional[int] = None) -> int: if seed is None: random.seed(None) return random.randint(0, pow(10, seeddigits) - 1) return seed from worlds import AutoWorld auto_world = AutoWorld.World