Archipelago/BaseClasses.py

1736 lines
77 KiB
Python

from __future__ import annotations
import collections
import functools
import logging
import random
import secrets
from argparse import Namespace
from collections import Counter, deque
from collections.abc import Collection, MutableSequence
from enum import IntEnum, IntFlag
from typing import (AbstractSet, Any, Callable, ClassVar, Dict, Iterable, Iterator, List, Mapping, NamedTuple,
Optional, Protocol, Set, Tuple, Union, TYPE_CHECKING)
from typing_extensions import NotRequired, TypedDict
import NetUtils
import Options
import Utils
if TYPE_CHECKING:
from entrance_rando import ERPlacementState
from worlds import AutoWorld
class Group(TypedDict):
name: str
game: str
world: "AutoWorld.World"
players: AbstractSet[int]
item_pool: NotRequired[Set[str]]
replacement_items: NotRequired[Dict[int, Optional[str]]]
local_items: NotRequired[Set[str]]
non_local_items: NotRequired[Set[str]]
link_replacement: NotRequired[bool]
class ThreadBarrierProxy:
"""Passes through getattr while passthrough is True"""
def __init__(self, obj: object) -> None:
self.passthrough = True
self.obj = obj
def __getattr__(self, name: str) -> Any:
if self.passthrough:
return getattr(self.obj, name)
else:
raise RuntimeError("You are in a threaded context and global random state was removed for your safety. "
"Please use multiworld.per_slot_randoms[player] or randomize ahead of output.")
class HasNameAndPlayer(Protocol):
name: str
player: int
class MultiWorld():
debug_types = False
player_name: Dict[int, str]
plando_texts: List[Dict[str, str]]
plando_items: List[List[Dict[str, Any]]]
plando_connections: List
worlds: Dict[int, "AutoWorld.World"]
groups: Dict[int, Group]
regions: RegionManager
itempool: List[Item]
is_race: bool = False
precollected_items: Dict[int, List[Item]]
state: CollectionState
plando_options: PlandoOptions
early_items: Dict[int, Dict[str, int]]
local_early_items: Dict[int, Dict[str, int]]
local_items: Dict[int, Options.LocalItems]
non_local_items: Dict[int, Options.NonLocalItems]
progression_balancing: Dict[int, Options.ProgressionBalancing]
completion_condition: Dict[int, Callable[[CollectionState], bool]]
indirect_connections: Dict[Region, Set[Entrance]]
exclude_locations: Dict[int, Options.ExcludeLocations]
priority_locations: Dict[int, Options.PriorityLocations]
start_inventory: Dict[int, Options.StartInventory]
start_hints: Dict[int, Options.StartHints]
start_location_hints: Dict[int, Options.StartLocationHints]
item_links: Dict[int, Options.ItemLinks]
game: Dict[int, str]
random: random.Random
per_slot_randoms: Utils.DeprecateDict[int, random.Random]
"""Deprecated. Please use `self.random` instead."""
class AttributeProxy():
def __init__(self, rule):
self.rule = rule
def __getitem__(self, player) -> bool:
return self.rule(player)
class RegionManager:
region_cache: Dict[int, Dict[str, Region]]
entrance_cache: Dict[int, Dict[str, Entrance]]
location_cache: Dict[int, Dict[str, Location]]
def __init__(self, players: int):
self.region_cache = {player: {} for player in range(1, players+1)}
self.entrance_cache = {player: {} for player in range(1, players+1)}
self.location_cache = {player: {} for player in range(1, players+1)}
def __iadd__(self, other: Iterable[Region]):
self.extend(other)
return self
def append(self, region: Region):
assert region.name not in self.region_cache[region.player], \
f"{region.name} already exists in region cache."
self.region_cache[region.player][region.name] = region
def extend(self, regions: Iterable[Region]):
for region in regions:
assert region.name not in self.region_cache[region.player], \
f"{region.name} already exists in region cache."
self.region_cache[region.player][region.name] = region
def add_group(self, new_id: int):
self.region_cache[new_id] = {}
self.entrance_cache[new_id] = {}
self.location_cache[new_id] = {}
def __iter__(self) -> Iterator[Region]:
for regions in self.region_cache.values():
yield from regions.values()
def __len__(self):
return sum(len(regions) for regions in self.region_cache.values())
def __init__(self, players: int):
# world-local random state is saved for multiple generations running concurrently
self.random = ThreadBarrierProxy(random.Random())
self.players = players
self.player_types = {player: NetUtils.SlotType.player for player in self.player_ids}
self.algorithm = 'balanced'
self.groups = {}
self.regions = self.RegionManager(players)
self.shops = []
self.itempool = []
self.seed = None
self.seed_name: str = "Unavailable"
self.precollected_items = {player: [] for player in self.player_ids}
self.required_locations = []
self.light_world_light_cone = False
self.dark_world_light_cone = False
self.rupoor_cost = 10
self.aga_randomness = True
self.save_and_quit_from_boss = True
self.custom = False
self.customitemarray = []
self.shuffle_ganon = True
self.spoiler = Spoiler(self)
self.early_items = {player: {} for player in self.player_ids}
self.local_early_items = {player: {} for player in self.player_ids}
self.indirect_connections = {}
self.start_inventory_from_pool: Dict[int, Options.StartInventoryPool] = {}
for player in range(1, players + 1):
def set_player_attr(attr: str, val) -> None:
self.__dict__.setdefault(attr, {})[player] = val
set_player_attr('plando_items', [])
set_player_attr('plando_texts', {})
set_player_attr('plando_connections', [])
set_player_attr('game', "Archipelago")
set_player_attr('completion_condition', lambda state: True)
self.worlds = {}
self.per_slot_randoms = Utils.DeprecateDict("Using per_slot_randoms is now deprecated. Please use the "
"world's random object instead (usually self.random)")
self.plando_options = PlandoOptions.none
def get_all_ids(self) -> Tuple[int, ...]:
return self.player_ids + tuple(self.groups)
def add_group(self, name: str, game: str, players: AbstractSet[int] = frozenset()) -> Tuple[int, Group]:
"""Create a group with name and return the assigned player ID and group.
If a group of this name already exists, the set of players is extended instead of creating a new one."""
from worlds import AutoWorld
for group_id, group in self.groups.items():
if group["name"] == name:
group["players"] |= players
return group_id, group
new_id: int = self.players + len(self.groups) + 1
self.regions.add_group(new_id)
self.game[new_id] = game
self.player_types[new_id] = NetUtils.SlotType.group
world_type = AutoWorld.AutoWorldRegister.world_types[game]
self.worlds[new_id] = world_type.create_group(self, new_id, players)
self.worlds[new_id].collect_item = AutoWorld.World.collect_item.__get__(self.worlds[new_id])
self.worlds[new_id].collect = AutoWorld.World.collect.__get__(self.worlds[new_id])
self.worlds[new_id].remove = AutoWorld.World.remove.__get__(self.worlds[new_id])
self.player_name[new_id] = name
new_group = self.groups[new_id] = Group(name=name, game=game, players=players,
world=self.worlds[new_id])
return new_id, new_group
def get_player_groups(self, player: int) -> Set[int]:
return {group_id for group_id, group in self.groups.items() if player in group["players"]}
def set_seed(self, seed: Optional[int] = None, secure: bool = False, name: Optional[str] = None):
assert not self.worlds, "seed needs to be initialized before Worlds"
self.seed = get_seed(seed)
if secure:
self.secure()
else:
self.random.seed(self.seed)
self.seed_name = name if name else str(self.seed)
def set_options(self, args: Namespace) -> None:
# TODO - remove this section once all worlds use options dataclasses
from worlds import AutoWorld
all_keys: Set[str] = {key for player in self.player_ids for key in
AutoWorld.AutoWorldRegister.world_types[self.game[player]].options_dataclass.type_hints}
for option_key in all_keys:
option = Utils.DeprecateDict(f"Getting options from multiworld is now deprecated. "
f"Please use `self.options.{option_key}` instead.")
option.update(getattr(args, option_key, {}))
setattr(self, option_key, option)
for player in self.player_ids:
world_type = AutoWorld.AutoWorldRegister.world_types[self.game[player]]
self.worlds[player] = world_type(self, player)
options_dataclass: type[Options.PerGameCommonOptions] = world_type.options_dataclass
self.worlds[player].options = options_dataclass(**{option_key: getattr(args, option_key)[player]
for option_key in options_dataclass.type_hints})
def set_item_links(self):
from worlds import AutoWorld
item_links = {}
replacement_prio = [False, True, None]
for player in self.player_ids:
for item_link in self.worlds[player].options.item_links.value:
if item_link["name"] in item_links:
if item_links[item_link["name"]]["game"] != self.game[player]:
raise Exception(f"Cannot ItemLink across games. Link: {item_link['name']}")
current_link = item_links[item_link["name"]]
current_link["players"][player] = item_link["replacement_item"]
current_link["item_pool"] &= set(item_link["item_pool"])
current_link["exclude"] |= set(item_link.get("exclude", []))
current_link["local_items"] &= set(item_link.get("local_items", []))
current_link["non_local_items"] &= set(item_link.get("non_local_items", []))
current_link["link_replacement"] = min(current_link["link_replacement"],
replacement_prio.index(item_link["link_replacement"]))
else:
if item_link["name"] in self.player_name.values():
raise Exception(f"Cannot name a ItemLink group the same as a player ({item_link['name']}) "
f"({self.get_player_name(player)}).")
item_links[item_link["name"]] = {
"players": {player: item_link["replacement_item"]},
"item_pool": set(item_link["item_pool"]),
"exclude": set(item_link.get("exclude", [])),
"game": self.game[player],
"local_items": set(item_link.get("local_items", [])),
"non_local_items": set(item_link.get("non_local_items", [])),
"link_replacement": replacement_prio.index(item_link["link_replacement"]),
}
for _name, item_link in item_links.items():
current_item_name_groups = AutoWorld.AutoWorldRegister.world_types[item_link["game"]].item_name_groups
pool = set()
local_items = set()
non_local_items = set()
for item in item_link["item_pool"]:
pool |= current_item_name_groups.get(item, {item})
for item in item_link["exclude"]:
pool -= current_item_name_groups.get(item, {item})
for item in item_link["local_items"]:
local_items |= current_item_name_groups.get(item, {item})
for item in item_link["non_local_items"]:
non_local_items |= current_item_name_groups.get(item, {item})
local_items &= pool
non_local_items &= pool
item_link["item_pool"] = pool
item_link["local_items"] = local_items
item_link["non_local_items"] = non_local_items
for group_name, item_link in item_links.items():
game = item_link["game"]
group_id, group = self.add_group(group_name, game, set(item_link["players"]))
group["item_pool"] = item_link["item_pool"]
group["replacement_items"] = item_link["players"]
group["local_items"] = item_link["local_items"]
group["non_local_items"] = item_link["non_local_items"]
group["link_replacement"] = replacement_prio[item_link["link_replacement"]]
def link_items(self) -> None:
"""Called to link together items in the itempool related to the registered item link groups."""
from worlds import AutoWorld
for group_id, group in self.groups.items():
def find_common_pool(players: Set[int], shared_pool: Set[str]) -> Tuple[
Optional[Dict[int, Dict[str, int]]], Optional[Dict[str, int]]
]:
classifications: Dict[str, int] = collections.defaultdict(int)
counters = {player: {name: 0 for name in shared_pool} for player in players}
for item in self.itempool:
if item.player in counters and item.name in shared_pool:
counters[item.player][item.name] += 1
classifications[item.name] |= item.classification
for player in players.copy():
if all([counters[player][item] == 0 for item in shared_pool]):
players.remove(player)
del (counters[player])
if not players:
return None, None
for item in shared_pool:
count = min(counters[player][item] for player in players)
if count:
for player in players:
counters[player][item] = count
else:
for player in players:
del (counters[player][item])
return counters, classifications
common_item_count, classifications = find_common_pool(group["players"], group["item_pool"])
if not common_item_count:
continue
new_itempool: List[Item] = []
for item_name, item_count in next(iter(common_item_count.values())).items():
for _ in range(item_count):
new_item = group["world"].create_item(item_name)
# mangle together all original classification bits
new_item.classification |= classifications[item_name]
new_itempool.append(new_item)
region = Region(group["world"].origin_region_name, group_id, self, "ItemLink")
self.regions.append(region)
locations = region.locations
# ensure that progression items are linked first, then non-progression
self.itempool.sort(key=lambda item: item.advancement)
for item in self.itempool:
count = common_item_count.get(item.player, {}).get(item.name, 0)
if count:
loc = Location(group_id, f"Item Link: {item.name} -> {self.player_name[item.player]} {count}",
None, region)
loc.access_rule = lambda state, item_name = item.name, group_id_ = group_id, count_ = count: \
state.has(item_name, group_id_, count_)
locations.append(loc)
loc.place_locked_item(item)
common_item_count[item.player][item.name] -= 1
else:
new_itempool.append(item)
itemcount = len(self.itempool)
self.itempool = new_itempool
while itemcount > len(self.itempool):
items_to_add = []
for player in group["players"]:
if group["link_replacement"]:
item_player = group_id
else:
item_player = player
if group["replacement_items"][player]:
items_to_add.append(AutoWorld.call_single(self, "create_item", item_player,
group["replacement_items"][player]))
else:
items_to_add.append(AutoWorld.call_single(self, "create_filler", item_player))
self.random.shuffle(items_to_add)
self.itempool.extend(items_to_add[:itemcount - len(self.itempool)])
def secure(self):
self.random = ThreadBarrierProxy(secrets.SystemRandom())
self.is_race = True
@functools.cached_property
def player_ids(self) -> Tuple[int, ...]:
return tuple(range(1, self.players + 1))
@Utils.cache_self1
def get_game_players(self, game_name: str) -> Tuple[int, ...]:
return tuple(player for player in self.player_ids if self.game[player] == game_name)
@Utils.cache_self1
def get_game_groups(self, game_name: str) -> Tuple[int, ...]:
return tuple(group_id for group_id in self.groups if self.game[group_id] == game_name)
@Utils.cache_self1
def get_game_worlds(self, game_name: str):
return tuple(world for player, world in self.worlds.items() if
player not in self.groups and self.game[player] == game_name)
def get_name_string_for_object(self, obj: HasNameAndPlayer) -> str:
return obj.name if self.players == 1 else f'{obj.name} ({self.get_player_name(obj.player)})'
def get_player_name(self, player: int) -> str:
return self.player_name[player]
def get_file_safe_player_name(self, player: int) -> str:
return Utils.get_file_safe_name(self.get_player_name(player))
def get_out_file_name_base(self, player: int) -> str:
""" the base name (without file extension) for each player's output file for a seed """
return f"AP_{self.seed_name}_P{player}_{self.get_file_safe_player_name(player).replace(' ', '_')}"
@functools.cached_property
def world_name_lookup(self):
return {self.player_name[player_id]: player_id for player_id in self.player_ids}
def get_regions(self, player: Optional[int] = None) -> Collection[Region]:
return self.regions if player is None else self.regions.region_cache[player].values()
def get_region(self, region_name: str, player: int) -> Region:
return self.regions.region_cache[player][region_name]
def get_entrance(self, entrance_name: str, player: int) -> Entrance:
return self.regions.entrance_cache[player][entrance_name]
def get_location(self, location_name: str, player: int) -> Location:
return self.regions.location_cache[player][location_name]
def get_all_state(self, use_cache: bool, allow_partial_entrances: bool = False) -> CollectionState:
cached = getattr(self, "_all_state", None)
if use_cache and cached:
return cached.copy()
ret = CollectionState(self, allow_partial_entrances)
for item in self.itempool:
self.worlds[item.player].collect(ret, item)
for player in self.player_ids:
subworld = self.worlds[player]
for item in subworld.get_pre_fill_items():
subworld.collect(ret, item)
ret.sweep_for_advancements()
if use_cache:
self._all_state = ret
return ret
def get_items(self) -> List[Item]:
return [loc.item for loc in self.get_filled_locations()] + self.itempool
def find_item_locations(self, item: str, player: int, resolve_group_locations: bool = False) -> List[Location]:
if resolve_group_locations:
player_groups = self.get_player_groups(player)
return [location for location in self.get_locations() if
location.item and location.item.name == item and location.player not in player_groups and
(location.item.player == player or location.item.player in player_groups)]
return [location for location in self.get_locations() if
location.item and location.item.name == item and location.item.player == player]
def find_item(self, item: str, player: int) -> Location:
return next(location for location in self.get_locations() if
location.item and location.item.name == item and location.item.player == player)
def find_items_in_locations(self, items: Set[str], player: int, resolve_group_locations: bool = False) -> List[Location]:
if resolve_group_locations:
player_groups = self.get_player_groups(player)
return [location for location in self.get_locations() if
location.item and location.item.name in items and location.player not in player_groups and
(location.item.player == player or location.item.player in player_groups)]
return [location for location in self.get_locations() if
location.item and location.item.name in items and location.item.player == player]
def create_item(self, item_name: str, player: int) -> Item:
return self.worlds[player].create_item(item_name)
def push_precollected(self, item: Item):
self.precollected_items[item.player].append(item)
self.state.collect(item, True)
def push_item(self, location: Location, item: Item, collect: bool = True):
location.item = item
item.location = location
if collect:
self.state.collect(item, location.advancement, location)
logging.debug('Placed %s at %s', item, location)
def get_entrances(self, player: Optional[int] = None) -> Iterable[Entrance]:
if player is not None:
return self.regions.entrance_cache[player].values()
return Utils.RepeatableChain(tuple(self.regions.entrance_cache[player].values()
for player in self.regions.entrance_cache))
def register_indirect_condition(self, region: Region, entrance: Entrance):
"""Report that access to this Region can result in unlocking this Entrance,
state.can_reach(Region) in the Entrance's traversal condition, as opposed to pure transition logic."""
self.indirect_connections.setdefault(region, set()).add(entrance)
def get_locations(self, player: Optional[int] = None) -> Iterable[Location]:
if player is not None:
return self.regions.location_cache[player].values()
return Utils.RepeatableChain(tuple(self.regions.location_cache[player].values()
for player in self.regions.location_cache))
def get_unfilled_locations(self, player: Optional[int] = None) -> List[Location]:
return [location for location in self.get_locations(player) if location.item is None]
def get_filled_locations(self, player: Optional[int] = None) -> List[Location]:
return [location for location in self.get_locations(player) if location.item is not None]
def get_reachable_locations(self, state: Optional[CollectionState] = None, player: Optional[int] = None) -> List[Location]:
state: CollectionState = state if state else self.state
return [location for location in self.get_locations(player) if location.can_reach(state)]
def get_placeable_locations(self, state=None, player=None) -> List[Location]:
state: CollectionState = state if state else self.state
return [location for location in self.get_locations(player) if location.item is None and location.can_reach(state)]
def get_unfilled_locations_for_players(self, location_names: List[str], players: Iterable[int]):
for player in players:
if not location_names:
valid_locations = [location.name for location in self.get_unfilled_locations(player)]
else:
valid_locations = location_names
relevant_cache = self.regions.location_cache[player]
for location_name in valid_locations:
location = relevant_cache.get(location_name, None)
if location and location.item is None:
yield location
def unlocks_new_location(self, item: Item) -> bool:
temp_state = self.state.copy()
temp_state.collect(item, True)
for location in self.get_unfilled_locations(item.player):
if temp_state.can_reach(location) and not self.state.can_reach(location):
return True
return False
def has_beaten_game(self, state: CollectionState, player: Optional[int] = None) -> bool:
if player:
return self.completion_condition[player](state)
else:
return all((self.has_beaten_game(state, p) for p in range(1, self.players + 1)))
def can_beat_game(self, starting_state: Optional[CollectionState] = None) -> bool:
if starting_state:
if self.has_beaten_game(starting_state):
return True
state = starting_state.copy()
else:
state = CollectionState(self)
if self.has_beaten_game(state):
return True
prog_locations = {location for location in self.get_locations() if location.item
and location.item.advancement and location not in state.locations_checked}
while prog_locations:
sphere: Set[Location] = set()
# build up spheres of collection radius.
# Everything in each sphere is independent from each other in dependencies and only depends on lower spheres
for location in prog_locations:
if location.can_reach(state):
sphere.add(location)
if not sphere:
# ran out of places and did not finish yet, quit
return False
for location in sphere:
state.collect(location.item, True, location)
prog_locations -= sphere
if self.has_beaten_game(state):
return True
return False
def get_spheres(self) -> Iterator[Set[Location]]:
"""
yields a set of locations for each logical sphere
If there are unreachable locations, the last sphere of reachable
locations is followed by an empty set, and then a set of all of the
unreachable locations.
"""
state = CollectionState(self)
locations = set(self.get_filled_locations())
while locations:
sphere: Set[Location] = set()
for location in locations:
if location.can_reach(state):
sphere.add(location)
yield sphere
if not sphere:
if locations:
yield locations # unreachable locations
break
for location in sphere:
state.collect(location.item, True, location)
locations -= sphere
def get_sendable_spheres(self) -> Iterator[Set[Location]]:
"""
yields a set of multiserver sendable locations (location.item.code: int) for each logical sphere
If there are unreachable locations, the last sphere of reachable locations is followed by an empty set,
and then a set of all of the unreachable locations.
"""
state = CollectionState(self)
locations: Set[Location] = set()
events: Set[Location] = set()
for location in self.get_filled_locations():
if type(location.item.code) is int:
locations.add(location)
else:
events.add(location)
while locations:
sphere: Set[Location] = set()
# cull events out
done_events: Set[Union[Location, None]] = {None}
while done_events:
done_events = set()
for event in events:
if event.can_reach(state):
state.collect(event.item, True, event)
done_events.add(event)
events -= done_events
for location in locations:
if location.can_reach(state):
sphere.add(location)
yield sphere
if not sphere:
if locations:
yield locations # unreachable locations
break
for location in sphere:
state.collect(location.item, True, location)
locations -= sphere
def fulfills_accessibility(self, state: Optional[CollectionState] = None):
"""Check if accessibility rules are fulfilled with current or supplied state."""
if not state:
state = CollectionState(self)
players: Dict[str, Set[int]] = {
"minimal": set(),
"items": set(),
"full": set()
}
for player, world in self.worlds.items():
players[world.options.accessibility.current_key].add(player)
beatable_fulfilled = False
def location_condition(location: Location) -> bool:
"""Determine if this location has to be accessible, location is already filtered by location_relevant"""
return location.player in players["full"] or \
(location.item and location.item.player not in players["minimal"])
def location_relevant(location: Location) -> bool:
"""Determine if this location is relevant to sweep."""
return location.player in players["full"] or location.advancement
def all_done() -> bool:
"""Check if all access rules are fulfilled"""
if not beatable_fulfilled:
return False
if any(location_condition(location) for location in locations):
return False # still locations required to be collected
return True
locations = [location for location in self.get_locations() if location_relevant(location)]
while locations:
sphere: List[Location] = []
for n in range(len(locations) - 1, -1, -1):
if locations[n].can_reach(state):
sphere.append(locations.pop(n))
if not sphere:
# ran out of places and did not finish yet, quit
logging.warning(f"Could not access required locations for accessibility check."
f" Missing: {locations}")
return False
for location in sphere:
if location.item:
state.collect(location.item, True, location)
if self.has_beaten_game(state):
beatable_fulfilled = True
if all_done():
return True
return False
PathValue = Tuple[str, Optional["PathValue"]]
class CollectionState():
prog_items: Dict[int, Counter[str]]
multiworld: MultiWorld
reachable_regions: Dict[int, Set[Region]]
blocked_connections: Dict[int, Set[Entrance]]
advancements: Set[Location]
path: Dict[Union[Region, Entrance], PathValue]
locations_checked: Set[Location]
stale: Dict[int, bool]
allow_partial_entrances: bool
additional_init_functions: List[Callable[[CollectionState, MultiWorld], None]] = []
additional_copy_functions: List[Callable[[CollectionState, CollectionState], CollectionState]] = []
def __init__(self, parent: MultiWorld, allow_partial_entrances: bool = False):
self.prog_items = {player: Counter() for player in parent.get_all_ids()}
self.multiworld = parent
self.reachable_regions = {player: set() for player in parent.get_all_ids()}
self.blocked_connections = {player: set() for player in parent.get_all_ids()}
self.advancements = set()
self.path = {}
self.locations_checked = set()
self.stale = {player: True for player in parent.get_all_ids()}
self.allow_partial_entrances = allow_partial_entrances
for function in self.additional_init_functions:
function(self, parent)
for items in parent.precollected_items.values():
for item in items:
self.collect(item, True)
def update_reachable_regions(self, player: int):
self.stale[player] = False
world: AutoWorld.World = self.multiworld.worlds[player]
reachable_regions = self.reachable_regions[player]
queue = deque(self.blocked_connections[player])
start: Region = world.get_region(world.origin_region_name)
# init on first call - this can't be done on construction since the regions don't exist yet
if start not in reachable_regions:
reachable_regions.add(start)
self.blocked_connections[player].update(start.exits)
queue.extend(start.exits)
if world.explicit_indirect_conditions:
self._update_reachable_regions_explicit_indirect_conditions(player, queue)
else:
self._update_reachable_regions_auto_indirect_conditions(player, queue)
def _update_reachable_regions_explicit_indirect_conditions(self, player: int, queue: deque):
reachable_regions = self.reachable_regions[player]
blocked_connections = self.blocked_connections[player]
# run BFS on all connections, and keep track of those blocked by missing items
while queue:
connection = queue.popleft()
new_region = connection.connected_region
if new_region in reachable_regions:
blocked_connections.remove(connection)
elif connection.can_reach(self):
if self.allow_partial_entrances and not new_region:
continue
assert new_region, f"tried to search through an Entrance \"{connection}\" with no connected Region"
reachable_regions.add(new_region)
blocked_connections.remove(connection)
blocked_connections.update(new_region.exits)
queue.extend(new_region.exits)
self.path[new_region] = (new_region.name, self.path.get(connection, None))
# Retry connections if the new region can unblock them
for new_entrance in self.multiworld.indirect_connections.get(new_region, set()):
if new_entrance in blocked_connections and new_entrance not in queue:
queue.append(new_entrance)
def _update_reachable_regions_auto_indirect_conditions(self, player: int, queue: deque):
reachable_regions = self.reachable_regions[player]
blocked_connections = self.blocked_connections[player]
new_connection: bool = True
# run BFS on all connections, and keep track of those blocked by missing items
while new_connection:
new_connection = False
while queue:
connection = queue.popleft()
new_region = connection.connected_region
if new_region in reachable_regions:
blocked_connections.remove(connection)
elif connection.can_reach(self):
if self.allow_partial_entrances and not new_region:
continue
assert new_region, f"tried to search through an Entrance \"{connection}\" with no connected Region"
reachable_regions.add(new_region)
blocked_connections.remove(connection)
blocked_connections.update(new_region.exits)
queue.extend(new_region.exits)
self.path[new_region] = (new_region.name, self.path.get(connection, None))
new_connection = True
# sweep for indirect connections, mostly Entrance.can_reach(unrelated_Region)
queue.extend(blocked_connections)
def copy(self) -> CollectionState:
ret = CollectionState(self.multiworld)
ret.prog_items = {player: counter.copy() for player, counter in self.prog_items.items()}
ret.reachable_regions = {player: region_set.copy() for player, region_set in
self.reachable_regions.items()}
ret.blocked_connections = {player: entrance_set.copy() for player, entrance_set in
self.blocked_connections.items()}
ret.advancements = self.advancements.copy()
ret.path = self.path.copy()
ret.locations_checked = self.locations_checked.copy()
ret.allow_partial_entrances = self.allow_partial_entrances
for function in self.additional_copy_functions:
ret = function(self, ret)
return ret
def can_reach(self,
spot: Union[Location, Entrance, Region, str],
resolution_hint: Optional[str] = None,
player: Optional[int] = None) -> bool:
if isinstance(spot, str):
assert isinstance(player, int), "can_reach: player is required if spot is str"
# try to resolve a name
if resolution_hint == 'Location':
return self.can_reach_location(spot, player)
elif resolution_hint == 'Entrance':
return self.can_reach_entrance(spot, player)
else:
# default to Region
return self.can_reach_region(spot, player)
return spot.can_reach(self)
def can_reach_location(self, spot: str, player: int) -> bool:
return self.multiworld.get_location(spot, player).can_reach(self)
def can_reach_entrance(self, spot: str, player: int) -> bool:
return self.multiworld.get_entrance(spot, player).can_reach(self)
def can_reach_region(self, spot: str, player: int) -> bool:
return self.multiworld.get_region(spot, player).can_reach(self)
def sweep_for_events(self, locations: Optional[Iterable[Location]] = None) -> None:
Utils.deprecate("sweep_for_events has been renamed to sweep_for_advancements. The functionality is the same. "
"Please switch over to sweep_for_advancements.")
return self.sweep_for_advancements(locations)
def sweep_for_advancements(self, locations: Optional[Iterable[Location]] = None) -> None:
if locations is None:
locations = self.multiworld.get_filled_locations()
reachable_advancements = True
# since the loop has a good chance to run more than once, only filter the advancements once
locations = {location for location in locations if location.advancement and location not in self.advancements}
while reachable_advancements:
reachable_advancements = {location for location in locations if location.can_reach(self)}
locations -= reachable_advancements
for advancement in reachable_advancements:
self.advancements.add(advancement)
assert isinstance(advancement.item, Item), "tried to collect Event with no Item"
self.collect(advancement.item, True, advancement)
# item name related
def has(self, item: str, player: int, count: int = 1) -> bool:
return self.prog_items[player][item] >= count
def has_all(self, items: Iterable[str], player: int) -> bool:
"""Returns True if each item name of items is in state at least once."""
return all(self.prog_items[player][item] for item in items)
def has_any(self, items: Iterable[str], player: int) -> bool:
"""Returns True if at least one item name of items is in state at least once."""
return any(self.prog_items[player][item] for item in items)
def has_all_counts(self, item_counts: Mapping[str, int], player: int) -> bool:
"""Returns True if each item name is in the state at least as many times as specified."""
return all(self.prog_items[player][item] >= count for item, count in item_counts.items())
def has_any_count(self, item_counts: Mapping[str, int], player: int) -> bool:
"""Returns True if at least one item name is in the state at least as many times as specified."""
return any(self.prog_items[player][item] >= count for item, count in item_counts.items())
def count(self, item: str, player: int) -> int:
return self.prog_items[player][item]
def has_from_list(self, items: Iterable[str], player: int, count: int) -> bool:
"""Returns True if the state contains at least `count` items matching any of the item names from a list."""
found: int = 0
player_prog_items = self.prog_items[player]
for item_name in items:
found += player_prog_items[item_name]
if found >= count:
return True
return False
def has_from_list_unique(self, items: Iterable[str], player: int, count: int) -> bool:
"""Returns True if the state contains at least `count` items matching any of the item names from a list.
Ignores duplicates of the same item."""
found: int = 0
player_prog_items = self.prog_items[player]
for item_name in items:
found += player_prog_items[item_name] > 0
if found >= count:
return True
return False
def count_from_list(self, items: Iterable[str], player: int) -> int:
"""Returns the cumulative count of items from a list present in state."""
return sum(self.prog_items[player][item_name] for item_name in items)
def count_from_list_unique(self, items: Iterable[str], player: int) -> int:
"""Returns the cumulative count of items from a list present in state. Ignores duplicates of the same item."""
return sum(self.prog_items[player][item_name] > 0 for item_name in items)
# item name group related
def has_group(self, item_name_group: str, player: int, count: int = 1) -> bool:
"""Returns True if the state contains at least `count` items present in a specified item group."""
found: int = 0
player_prog_items = self.prog_items[player]
for item_name in self.multiworld.worlds[player].item_name_groups[item_name_group]:
found += player_prog_items[item_name]
if found >= count:
return True
return False
def has_group_unique(self, item_name_group: str, player: int, count: int = 1) -> bool:
"""Returns True if the state contains at least `count` items present in a specified item group.
Ignores duplicates of the same item.
"""
found: int = 0
player_prog_items = self.prog_items[player]
for item_name in self.multiworld.worlds[player].item_name_groups[item_name_group]:
found += player_prog_items[item_name] > 0
if found >= count:
return True
return False
def count_group(self, item_name_group: str, player: int) -> int:
"""Returns the cumulative count of items from an item group present in state."""
player_prog_items = self.prog_items[player]
return sum(
player_prog_items[item_name]
for item_name in self.multiworld.worlds[player].item_name_groups[item_name_group]
)
def count_group_unique(self, item_name_group: str, player: int) -> int:
"""Returns the cumulative count of items from an item group present in state.
Ignores duplicates of the same item."""
player_prog_items = self.prog_items[player]
return sum(
player_prog_items[item_name] > 0
for item_name in self.multiworld.worlds[player].item_name_groups[item_name_group]
)
# Item related
def collect(self, item: Item, prevent_sweep: bool = False, location: Optional[Location] = None) -> bool:
if location:
self.locations_checked.add(location)
changed = self.multiworld.worlds[item.player].collect(self, item)
self.stale[item.player] = True
if changed and not prevent_sweep:
self.sweep_for_advancements()
return changed
def remove(self, item: Item):
changed = self.multiworld.worlds[item.player].remove(self, item)
if changed:
# invalidate caches, nothing can be trusted anymore now
self.reachable_regions[item.player] = set()
self.blocked_connections[item.player] = set()
self.stale[item.player] = True
class EntranceType(IntEnum):
ONE_WAY = 1
TWO_WAY = 2
class Entrance:
access_rule: Callable[[CollectionState], bool] = staticmethod(lambda state: True)
hide_path: bool = False
player: int
name: str
parent_region: Optional[Region]
connected_region: Optional[Region] = None
randomization_group: int
randomization_type: EntranceType
# LttP specific, TODO: should make a LttPEntrance
addresses = None
target = None
def __init__(self, player: int, name: str = "", parent: Optional[Region] = None,
randomization_group: int = 0, randomization_type: EntranceType = EntranceType.ONE_WAY) -> None:
self.name = name
self.parent_region = parent
self.player = player
self.randomization_group = randomization_group
self.randomization_type = randomization_type
def can_reach(self, state: CollectionState) -> bool:
assert self.parent_region, f"called can_reach on an Entrance \"{self}\" with no parent_region"
if self.parent_region.can_reach(state) and self.access_rule(state):
if not self.hide_path and self not in state.path:
state.path[self] = (self.name, state.path.get(self.parent_region, (self.parent_region.name, None)))
return True
return False
def connect(self, region: Region, addresses: Any = None, target: Any = None) -> None:
self.connected_region = region
self.target = target
self.addresses = addresses
region.entrances.append(self)
def is_valid_source_transition(self, er_state: "ERPlacementState") -> bool:
"""
Determines whether this is a valid source transition, that is, whether the entrance
randomizer is allowed to pair it to place any other regions. By default, this is the
same as a reachability check, but can be modified by Entrance implementations to add
other restrictions based on the placement state.
:param er_state: The current (partial) state of the ongoing entrance randomization
"""
return self.can_reach(er_state.collection_state)
def can_connect_to(self, other: Entrance, dead_end: bool, er_state: "ERPlacementState") -> bool:
"""
Determines whether a given Entrance is a valid target transition, that is, whether
the entrance randomizer is allowed to pair this Entrance to that Entrance. By default,
only allows connection between entrances of the same type (one ways only go to one ways,
two ways always go to two ways) and prevents connecting an exit to itself in coupled mode.
:param other: The proposed Entrance to connect to
:param dead_end: Whether the other entrance considered a dead end by Entrance randomization
:param er_state: The current (partial) state of the ongoing entrance randomization
"""
# the implementation of coupled causes issues for self-loops since the reverse entrance will be the
# same as the forward entrance. In uncoupled they are ok.
return self.randomization_type == other.randomization_type and (not er_state.coupled or self.name != other.name)
def __repr__(self):
multiworld = self.parent_region.multiworld if self.parent_region else None
return multiworld.get_name_string_for_object(self) if multiworld else f'{self.name} (Player {self.player})'
class Region:
name: str
_hint_text: str
player: int
multiworld: Optional[MultiWorld]
entrances: List[Entrance]
exits: List[Entrance]
locations: List[Location]
entrance_type: ClassVar[type[Entrance]] = Entrance
class Register(MutableSequence):
region_manager: MultiWorld.RegionManager
def __init__(self, region_manager: MultiWorld.RegionManager):
self._list = []
self.region_manager = region_manager
def __getitem__(self, index: int) -> Location:
return self._list.__getitem__(index)
def __setitem__(self, index: int, value: Location) -> None:
raise NotImplementedError()
def __len__(self) -> int:
return self._list.__len__()
# This seems to not be needed, but that's a bit suspicious.
# def __del__(self):
# self.clear()
def copy(self):
return self._list.copy()
class LocationRegister(Register):
def __delitem__(self, index: int) -> None:
location: Location = self._list.__getitem__(index)
self._list.__delitem__(index)
del(self.region_manager.location_cache[location.player][location.name])
def insert(self, index: int, value: Location) -> None:
assert value.name not in self.region_manager.location_cache[value.player], \
f"{value.name} already exists in the location cache."
self._list.insert(index, value)
self.region_manager.location_cache[value.player][value.name] = value
class EntranceRegister(Register):
def __delitem__(self, index: int) -> None:
entrance: Entrance = self._list.__getitem__(index)
self._list.__delitem__(index)
del(self.region_manager.entrance_cache[entrance.player][entrance.name])
def insert(self, index: int, value: Entrance) -> None:
assert value.name not in self.region_manager.entrance_cache[value.player], \
f"{value.name} already exists in the entrance cache."
self._list.insert(index, value)
self.region_manager.entrance_cache[value.player][value.name] = value
_locations: LocationRegister[Location]
_exits: EntranceRegister[Entrance]
def __init__(self, name: str, player: int, multiworld: MultiWorld, hint: Optional[str] = None):
self.name = name
self.entrances = []
self._exits = self.EntranceRegister(multiworld.regions)
self._locations = self.LocationRegister(multiworld.regions)
self.multiworld = multiworld
self._hint_text = hint
self.player = player
def get_locations(self):
return self._locations
def set_locations(self, new):
if new is self._locations:
return
self._locations.clear()
self._locations.extend(new)
locations = property(get_locations, set_locations)
def get_exits(self):
return self._exits
def set_exits(self, new):
if new is self._exits:
return
self._exits.clear()
self._exits.extend(new)
exits = property(get_exits, set_exits)
def can_reach(self, state: CollectionState) -> bool:
if state.stale[self.player]:
state.update_reachable_regions(self.player)
return self in state.reachable_regions[self.player]
@property
def hint_text(self) -> str:
return self._hint_text if self._hint_text else self.name
def get_connecting_entrance(self, is_main_entrance: Callable[[Entrance], bool]) -> Entrance:
for entrance in self.entrances:
if is_main_entrance(entrance):
return entrance
for entrance in self.entrances: # BFS might be better here, trying DFS for now.
return entrance.parent_region.get_connecting_entrance(is_main_entrance)
def add_locations(self, locations: Dict[str, Optional[int]],
location_type: Optional[type[Location]] = None) -> None:
"""
Adds locations to the Region object, where location_type is your Location class and locations is a dict of
location names to address.
:param locations: dictionary of locations to be created and added to this Region `{name: ID}`
:param location_type: Location class to be used to create the locations with"""
if location_type is None:
location_type = Location
for location, address in locations.items():
self.locations.append(location_type(self.player, location, address, self))
def connect(self, connecting_region: Region, name: Optional[str] = None,
rule: Optional[Callable[[CollectionState], bool]] = None) -> Entrance:
"""
Connects this Region to another Region, placing the provided rule on the connection.
:param connecting_region: Region object to connect to path is `self -> exiting_region`
:param name: name of the connection being created
:param rule: callable to determine access of this connection to go from self to the exiting_region"""
exit_ = self.create_exit(name if name else f"{self.name} -> {connecting_region.name}")
if rule:
exit_.access_rule = rule
exit_.connect(connecting_region)
return exit_
def create_exit(self, name: str) -> Entrance:
"""
Creates and returns an Entrance object as an exit of this region.
:param name: name of the Entrance being created
"""
exit_ = self.entrance_type(self.player, name, self)
self.exits.append(exit_)
return exit_
def create_er_target(self, name: str) -> Entrance:
"""
Creates and returns an Entrance object as an entrance to this region
:param name: name of the Entrance being created
"""
entrance = self.entrance_type(self.player, name)
entrance.connect(self)
return entrance
def add_exits(self, exits: Union[Iterable[str], Dict[str, Optional[str]]],
rules: Dict[str, Callable[[CollectionState], bool]] = None) -> List[Entrance]:
"""
Connects current region to regions in exit dictionary. Passed region names must exist first.
:param exits: exits from the region. format is {"connecting_region": "exit_name"}. if a non dict is provided,
created entrances will be named "self.name -> connecting_region"
:param rules: rules for the exits from this region. format is {"connecting_region", rule}
"""
if not isinstance(exits, Dict):
exits = dict.fromkeys(exits)
return [
self.connect(
self.multiworld.get_region(connecting_region, self.player),
name,
rules[connecting_region] if rules and connecting_region in rules else None,
)
for connecting_region, name in exits.items()
]
def __repr__(self):
return self.multiworld.get_name_string_for_object(self) if self.multiworld else f'{self.name} (Player {self.player})'
class LocationProgressType(IntEnum):
DEFAULT = 1
PRIORITY = 2
EXCLUDED = 3
class Location:
game: str = "Generic"
player: int
name: str
address: Optional[int]
parent_region: Optional[Region]
locked: bool = False
show_in_spoiler: bool = True
progress_type: LocationProgressType = LocationProgressType.DEFAULT
always_allow: Callable[[CollectionState, Item], bool] = staticmethod(lambda state, item: False)
access_rule: Callable[[CollectionState], bool] = staticmethod(lambda state: True)
item_rule: Callable[[Item], bool] = staticmethod(lambda item: True)
item: Optional[Item] = None
def __init__(self, player: int, name: str = '', address: Optional[int] = None, parent: Optional[Region] = None):
self.player = player
self.name = name
self.address = address
self.parent_region = parent
def can_fill(self, state: CollectionState, item: Item, check_access: bool = True) -> bool:
return ((
self.always_allow(state, item)
and item.name not in state.multiworld.worlds[item.player].options.non_local_items
) or (
(self.progress_type != LocationProgressType.EXCLUDED or not (item.advancement or item.useful))
and self.item_rule(item)
and (not check_access or self.can_reach(state))
))
def can_reach(self, state: CollectionState) -> bool:
# Region.can_reach is just a cache lookup, so placing it first for faster abort on average
assert self.parent_region, f"called can_reach on a Location \"{self}\" with no parent_region"
return self.parent_region.can_reach(state) and self.access_rule(state)
def place_locked_item(self, item: Item):
if self.item:
raise Exception(f"Location {self} already filled.")
self.item = item
item.location = self
self.locked = True
def __repr__(self):
multiworld = self.parent_region.multiworld if self.parent_region and self.parent_region.multiworld else None
return multiworld.get_name_string_for_object(self) if multiworld else f'{self.name} (Player {self.player})'
def __hash__(self):
return hash((self.name, self.player))
def __lt__(self, other: Location):
return (self.player, self.name) < (other.player, other.name)
@property
def advancement(self) -> bool:
return self.item is not None and self.item.advancement
@property
def is_event(self) -> bool:
"""Returns True if the address of this location is None, denoting it is an Event Location."""
return self.address is None
@property
def native_item(self) -> bool:
"""Returns True if the item in this location matches game."""
return self.item is not None and self.item.game == self.game
@property
def hint_text(self) -> str:
return "at " + self.name.replace("_", " ").replace("-", " ")
class ItemClassification(IntFlag):
filler = 0b0000
""" aka trash, as in filler items like ammo, currency etc """
progression = 0b0001
""" Item that is logically relevant.
Protects this item from being placed on excluded or unreachable locations. """
useful = 0b0010
""" Item that is especially useful.
Protects this item from being placed on excluded or unreachable locations.
When combined with another flag like "progression", it means "an especially useful progression item". """
trap = 0b0100
""" Item that is detrimental in some way. """
skip_balancing = 0b1000
""" should technically never occur on its own
Item that is logically relevant, but progression balancing should not touch.
Typically currency or other counted items. """
progression_skip_balancing = 0b1001 # only progression gets balanced
def as_flag(self) -> int:
"""As Network API flag int."""
return int(self & 0b0111)
class Item:
game: str = "Generic"
__slots__ = ("name", "classification", "code", "player", "location")
name: str
classification: ItemClassification
code: Optional[int]
"""an item with code None is called an Event, and does not get written to multidata"""
player: int
location: Optional[Location]
def __init__(self, name: str, classification: ItemClassification, code: Optional[int], player: int):
self.name = name
self.classification = classification
self.player = player
self.code = code
self.location = None
@property
def hint_text(self) -> str:
return getattr(self, "_hint_text", self.name.replace("_", " ").replace("-", " "))
@property
def pedestal_hint_text(self) -> str:
return getattr(self, "_pedestal_hint_text", self.name.replace("_", " ").replace("-", " "))
@property
def advancement(self) -> bool:
return ItemClassification.progression in self.classification
@property
def skip_in_prog_balancing(self) -> bool:
return ItemClassification.progression_skip_balancing in self.classification
@property
def useful(self) -> bool:
return ItemClassification.useful in self.classification
@property
def trap(self) -> bool:
return ItemClassification.trap in self.classification
@property
def filler(self) -> bool:
return not (self.advancement or self.useful or self.trap)
@property
def excludable(self) -> bool:
return not (self.advancement or self.useful)
@property
def flags(self) -> int:
return self.classification.as_flag()
def __eq__(self, other: object) -> bool:
if not isinstance(other, Item):
return NotImplemented
return self.name == other.name and self.player == other.player
def __lt__(self, other: object) -> bool:
if not isinstance(other, Item):
return NotImplemented
if other.player != self.player:
return other.player < self.player
return self.name < other.name
def __hash__(self) -> int:
return hash((self.name, self.player))
def __repr__(self) -> str:
if self.location and self.location.parent_region and self.location.parent_region.multiworld:
return self.location.parent_region.multiworld.get_name_string_for_object(self)
return f"{self.name} (Player {self.player})"
class EntranceInfo(TypedDict, total=False):
player: int
entrance: str
exit: str
direction: str
class Spoiler:
multiworld: MultiWorld
hashes: Dict[int, str]
entrances: Dict[Tuple[str, str, int], EntranceInfo]
playthrough: Dict[str, Union[List[str], Dict[str, str]]] # sphere "0" is list, others are dict
unreachables: Set[Location]
paths: Dict[str, List[Union[Tuple[str, str], Tuple[str, None]]]] # last step takes no further exits
def __init__(self, multiworld: MultiWorld) -> None:
self.multiworld = multiworld
self.hashes = {}
self.entrances = {}
self.playthrough = {}
self.unreachables = set()
self.paths = {}
def set_entrance(self, entrance: str, exit_: str, direction: str, player: int) -> None:
if self.multiworld.players == 1:
self.entrances[(entrance, direction, player)] = \
{"entrance": entrance, "exit": exit_, "direction": direction}
else:
self.entrances[(entrance, direction, player)] = \
{"player": player, "entrance": entrance, "exit": exit_, "direction": direction}
def create_playthrough(self, create_paths: bool = True) -> None:
"""Destructive to the multiworld while it is run, damage gets repaired afterwards."""
from itertools import chain
# get locations containing progress items
multiworld = self.multiworld
prog_locations = {location for location in multiworld.get_filled_locations() if location.item.advancement}
state_cache: List[Optional[CollectionState]] = [None]
collection_spheres: List[Set[Location]] = []
state = CollectionState(multiworld)
sphere_candidates = set(prog_locations)
logging.debug('Building up collection spheres.')
while sphere_candidates:
# build up spheres of collection radius.
# Everything in each sphere is independent from each other in dependencies and only depends on lower spheres
sphere = {location for location in sphere_candidates if state.can_reach(location)}
for location in sphere:
state.collect(location.item, True, location)
sphere_candidates -= sphere
collection_spheres.append(sphere)
state_cache.append(state.copy())
logging.debug('Calculated sphere %i, containing %i of %i progress items.', len(collection_spheres),
len(sphere),
len(prog_locations))
if not sphere:
logging.debug('The following items could not be reached: %s', ['%s (Player %d) at %s (Player %d)' % (
location.item.name, location.item.player, location.name, location.player) for location in
sphere_candidates])
if any([multiworld.worlds[location.item.player].options.accessibility != 'minimal' for location in sphere_candidates]):
raise RuntimeError(f'Not all progression items reachable ({sphere_candidates}). '
f'Something went terribly wrong here.')
else:
self.unreachables = sphere_candidates
break
# in the second phase, we cull each sphere such that the game is still beatable,
# reducing each range of influence to the bare minimum required inside it
restore_later: Dict[Location, Item] = {}
for num, sphere in reversed(tuple(enumerate(collection_spheres))):
to_delete: Set[Location] = set()
for location in sphere:
# we remove the item at location and check if game is still beatable
logging.debug('Checking if %s (Player %d) is required to beat the game.', location.item.name,
location.item.player)
old_item = location.item
location.item = None
if multiworld.can_beat_game(state_cache[num]):
to_delete.add(location)
restore_later[location] = old_item
else:
# still required, got to keep it around
location.item = old_item
# cull entries in spheres for spoiler walkthrough at end
sphere -= to_delete
# second phase, sphere 0
removed_precollected: List[Item] = []
for precollected_items in multiworld.precollected_items.values():
# The list of items is mutated by removing one item at a time to determine if each item is required to beat
# the game, and re-adding that item if it was required, so a copy needs to be made before iterating.
for item in precollected_items.copy():
if not item.advancement:
continue
logging.debug('Checking if %s (Player %d) is required to beat the game.', item.name, item.player)
precollected_items.remove(item)
multiworld.state.remove(item)
if not multiworld.can_beat_game():
# Add the item back into `precollected_items` and collect it into `multiworld.state`.
multiworld.push_precollected(item)
else:
removed_precollected.append(item)
# we are now down to just the required progress items in collection_spheres. Unfortunately
# the previous pruning stage could potentially have made certain items dependant on others
# in the same or later sphere (because the location had 2 ways to access but the item originally
# used to access it was deemed not required.) So we need to do one final sphere collection pass
# to build up the correct spheres
required_locations = {item for sphere in collection_spheres for item in sphere}
state = CollectionState(multiworld)
collection_spheres = []
while required_locations:
sphere = set(filter(state.can_reach, required_locations))
for location in sphere:
state.collect(location.item, True, location)
collection_spheres.append(sphere)
logging.debug('Calculated final sphere %i, containing %i of %i progress items.', len(collection_spheres),
len(sphere), len(required_locations))
required_locations -= sphere
if not sphere:
raise RuntimeError(f'Not all required items reachable. Unreachable locations: {required_locations}')
# we can finally output our playthrough
self.playthrough = {"0": sorted([self.multiworld.get_name_string_for_object(item) for item in
chain.from_iterable(multiworld.precollected_items.values())
if item.advancement])}
for i, sphere in enumerate(collection_spheres):
self.playthrough[str(i + 1)] = {
str(location): str(location.item) for location in sorted(sphere)}
if create_paths:
self.create_paths(state, collection_spheres)
# repair the multiworld again
for location, item in restore_later.items():
location.item = item
for item in removed_precollected:
multiworld.push_precollected(item)
def create_paths(self, state: CollectionState, collection_spheres: List[Set[Location]]) -> None:
from itertools import zip_longest
multiworld = self.multiworld
def flist_to_iter(path_value: Optional[PathValue]) -> Iterator[str]:
while path_value:
region_or_entrance, path_value = path_value
yield region_or_entrance
def get_path(state: CollectionState, region: Region) -> List[Union[Tuple[str, str], Tuple[str, None]]]:
reversed_path_as_flist: PathValue = state.path.get(region, (str(region), None))
string_path_flat = reversed(list(map(str, flist_to_iter(reversed_path_as_flist))))
# Now we combine the flat string list into (region, exit) pairs
pathsiter = iter(string_path_flat)
pathpairs = zip_longest(pathsiter, pathsiter)
return list(pathpairs)
self.paths = {}
topology_worlds = (player for player in multiworld.player_ids if multiworld.worlds[player].topology_present)
for player in topology_worlds:
self.paths.update(
{str(location): get_path(state, location.parent_region)
for sphere in collection_spheres for location in sphere
if location.player == player})
if player in multiworld.get_game_players("A Link to the Past"):
# If Pyramid Fairy Entrance needs to be reached, also path to Big Bomb Shop
# Maybe move the big bomb over to the Event system instead?
if any(exit_path == 'Pyramid Fairy' for path in self.paths.values()
for (_, exit_path) in path):
if multiworld.worlds[player].options.mode != 'inverted':
self.paths[str(multiworld.get_region('Big Bomb Shop', player))] = \
get_path(state, multiworld.get_region('Big Bomb Shop', player))
else:
self.paths[str(multiworld.get_region('Inverted Big Bomb Shop', player))] = \
get_path(state, multiworld.get_region('Inverted Big Bomb Shop', player))
def to_file(self, filename: str) -> None:
from itertools import chain
from worlds import AutoWorld
from Options import Visibility
def write_option(option_key: str, option_obj: Options.AssembleOptions) -> None:
res = getattr(self.multiworld.worlds[player].options, option_key)
if res.visibility & Visibility.spoiler:
display_name = getattr(option_obj, "display_name", option_key)
outfile.write(f"{display_name + ':':33}{res.current_option_name}\n")
with open(filename, 'w', encoding="utf-8-sig") as outfile:
outfile.write(
'Archipelago Version %s - Seed: %s\n\n' % (
Utils.__version__, self.multiworld.seed))
outfile.write('Filling Algorithm: %s\n' % self.multiworld.algorithm)
outfile.write('Players: %d\n' % self.multiworld.players)
outfile.write(f'Plando Options: {self.multiworld.plando_options}\n')
AutoWorld.call_stage(self.multiworld, "write_spoiler_header", outfile)
for player in range(1, self.multiworld.players + 1):
if self.multiworld.players > 1:
outfile.write('\nPlayer %d: %s\n' % (player, self.multiworld.get_player_name(player)))
outfile.write('Game: %s\n' % self.multiworld.game[player])
for f_option, option in self.multiworld.worlds[player].options_dataclass.type_hints.items():
write_option(f_option, option)
AutoWorld.call_single(self.multiworld, "write_spoiler_header", player, outfile)
if self.entrances:
outfile.write('\n\nEntrances:\n\n')
outfile.write('\n'.join(['%s%s %s %s' % (f'{self.multiworld.get_player_name(entry["player"])}: '
if self.multiworld.players > 1 else '', entry['entrance'],
'<=>' if entry['direction'] == 'both' else
'<=' if entry['direction'] == 'exit' else '=>',
entry['exit']) for entry in self.entrances.values()]))
AutoWorld.call_all(self.multiworld, "write_spoiler", outfile)
precollected_items = [f"{item.name} ({self.multiworld.get_player_name(item.player)})"
if self.multiworld.players > 1
else item.name
for item in chain.from_iterable(self.multiworld.precollected_items.values())]
if precollected_items:
outfile.write("\n\nStarting Items:\n\n")
outfile.write("\n".join([item for item in precollected_items]))
locations = [(str(location), str(location.item) if location.item is not None else "Nothing")
for location in self.multiworld.get_locations() if location.show_in_spoiler]
outfile.write('\n\nLocations:\n\n')
outfile.write('\n'.join(
['%s: %s' % (location, item) for location, item in locations]))
outfile.write('\n\nPlaythrough:\n\n')
outfile.write('\n'.join(['%s: {\n%s\n}' % (sphere_nr, '\n'.join(
[f" {location}: {item}" for (location, item) in sphere.items()] if isinstance(sphere, dict) else
[f" {item}" for item in sphere])) for (sphere_nr, sphere) in self.playthrough.items()]))
if self.unreachables:
outfile.write('\n\nUnreachable Progression Items:\n\n')
outfile.write(
'\n'.join(['%s: %s' % (unreachable.item, unreachable) for unreachable in self.unreachables]))
if self.paths:
outfile.write('\n\nPaths:\n\n')
path_listings: List[str] = []
for location, path in sorted(self.paths.items()):
path_lines: List[str] = []
for region, exit in path:
if exit is not None:
path_lines.append("{} -> {}".format(region, exit))
else:
path_lines.append(region)
path_listings.append("{}\n {}".format(location, "\n => ".join(path_lines)))
outfile.write('\n'.join(path_listings))
AutoWorld.call_all(self.multiworld, "write_spoiler_end", outfile)
class Tutorial(NamedTuple):
"""Class to build website tutorial pages from a .md file in the world's /docs folder. Order is as follows.
Name of the tutorial as it will appear on the site. Concise description covering what the guide will entail.
Language the guide is written in. Name of the file ex 'setup_en.md'. Name of the link on the site; game name is
filled automatically so 'setup/en' etc. Author or authors."""
tutorial_name: str
description: str
language: str
file_name: str
link: str
authors: List[str]
class PlandoOptions(IntFlag):
none = 0b0000
items = 0b0001
connections = 0b0010
texts = 0b0100
bosses = 0b1000
@classmethod
def from_option_string(cls, option_string: str) -> PlandoOptions:
result = cls(0)
for part in option_string.split(","):
part = part.strip().lower()
if part:
result = cls._handle_part(part, result)
return result
@classmethod
def from_set(cls, option_set: Set[str]) -> PlandoOptions:
result = cls(0)
for part in option_set:
result = cls._handle_part(part, result)
return result
@classmethod
def _handle_part(cls, part: str, base: PlandoOptions) -> PlandoOptions:
try:
return base | cls[part]
except Exception as e:
raise KeyError(f"{part} is not a recognized name for a plando module. "
f"Known options: {', '.join(str(flag.name) for flag in cls)}") from e
def __str__(self) -> str:
if self.value:
return ", ".join(str(flag.name) for flag in PlandoOptions if self.value & flag.value)
return "None"
seeddigits = 20
def get_seed(seed: Optional[int] = None) -> int:
if seed is None:
random.seed(None)
return random.randint(0, pow(10, seeddigits) - 1)
return seed