412 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			412 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
import itertools
 | 
						|
import math
 | 
						|
import random
 | 
						|
from typing import TYPE_CHECKING, Iterable, List, Set, Tuple, Union
 | 
						|
 | 
						|
from s2clientprotocol import common_pb2 as common_pb
 | 
						|
 | 
						|
if TYPE_CHECKING:
 | 
						|
    from .unit import Unit
 | 
						|
    from .units import Units
 | 
						|
 | 
						|
EPSILON = 10**-8
 | 
						|
 | 
						|
 | 
						|
def _sign(num):
 | 
						|
    return math.copysign(1, num)
 | 
						|
 | 
						|
 | 
						|
class Pointlike(tuple):
 | 
						|
 | 
						|
    @property
 | 
						|
    def position(self) -> Pointlike:
 | 
						|
        return self
 | 
						|
 | 
						|
    def distance_to(self, target: Union[Unit, Point2]) -> float:
 | 
						|
        """Calculate a single distance from a point or unit to another point or unit
 | 
						|
 | 
						|
        :param target:"""
 | 
						|
        p = target.position
 | 
						|
        return math.hypot(self[0] - p[0], self[1] - p[1])
 | 
						|
 | 
						|
    def distance_to_point2(self, p: Union[Point2, Tuple[float, float]]) -> float:
 | 
						|
        """Same as the function above, but should be a bit faster because of the dropped asserts
 | 
						|
        and conversion.
 | 
						|
 | 
						|
        :param p:"""
 | 
						|
        return math.hypot(self[0] - p[0], self[1] - p[1])
 | 
						|
 | 
						|
    def _distance_squared(self, p2: Point2) -> float:
 | 
						|
        """Function used to not take the square root as the distances will stay proportionally the same.
 | 
						|
        This is to speed up the sorting process.
 | 
						|
 | 
						|
        :param p2:"""
 | 
						|
        return (self[0] - p2[0])**2 + (self[1] - p2[1])**2
 | 
						|
 | 
						|
    def sort_by_distance(self, ps: Union[Units, Iterable[Point2]]) -> List[Point2]:
 | 
						|
        """This returns the target points sorted as list.
 | 
						|
        You should not pass a set or dict since those are not sortable.
 | 
						|
        If you want to sort your units towards a point, use 'units.sorted_by_distance_to(point)' instead.
 | 
						|
 | 
						|
        :param ps:"""
 | 
						|
        return sorted(ps, key=lambda p: self.distance_to_point2(p.position))
 | 
						|
 | 
						|
    def closest(self, ps: Union[Units, Iterable[Point2]]) -> Union[Unit, Point2]:
 | 
						|
        """This function assumes the 2d distance is meant
 | 
						|
 | 
						|
        :param ps:"""
 | 
						|
        assert ps, "ps is empty"
 | 
						|
        # pylint: disable=W0108
 | 
						|
        return min(ps, key=lambda p: self.distance_to(p))
 | 
						|
 | 
						|
    def distance_to_closest(self, ps: Union[Units, Iterable[Point2]]) -> float:
 | 
						|
        """This function assumes the 2d distance is meant
 | 
						|
        :param ps:"""
 | 
						|
        assert ps, "ps is empty"
 | 
						|
        closest_distance = math.inf
 | 
						|
        for p2 in ps:
 | 
						|
            p2 = p2.position
 | 
						|
            distance = self.distance_to(p2)
 | 
						|
            if distance <= closest_distance:
 | 
						|
                closest_distance = distance
 | 
						|
        return closest_distance
 | 
						|
 | 
						|
    def furthest(self, ps: Union[Units, Iterable[Point2]]) -> Union[Unit, Pointlike]:
 | 
						|
        """This function assumes the 2d distance is meant
 | 
						|
 | 
						|
        :param ps: Units object, or iterable of Unit or Point2"""
 | 
						|
        assert ps, "ps is empty"
 | 
						|
        # pylint: disable=W0108
 | 
						|
        return max(ps, key=lambda p: self.distance_to(p))
 | 
						|
 | 
						|
    def distance_to_furthest(self, ps: Union[Units, Iterable[Point2]]) -> float:
 | 
						|
        """This function assumes the 2d distance is meant
 | 
						|
 | 
						|
        :param ps:"""
 | 
						|
        assert ps, "ps is empty"
 | 
						|
        furthest_distance = -math.inf
 | 
						|
        for p2 in ps:
 | 
						|
            p2 = p2.position
 | 
						|
            distance = self.distance_to(p2)
 | 
						|
            if distance >= furthest_distance:
 | 
						|
                furthest_distance = distance
 | 
						|
        return furthest_distance
 | 
						|
 | 
						|
    def offset(self, p) -> Pointlike:
 | 
						|
        """
 | 
						|
 | 
						|
        :param p:
 | 
						|
        """
 | 
						|
        return self.__class__(a + b for a, b in itertools.zip_longest(self, p[:len(self)], fillvalue=0))
 | 
						|
 | 
						|
    def unit_axes_towards(self, p):
 | 
						|
        """
 | 
						|
 | 
						|
        :param p:
 | 
						|
        """
 | 
						|
        return self.__class__(_sign(b - a) for a, b in itertools.zip_longest(self, p[:len(self)], fillvalue=0))
 | 
						|
 | 
						|
    def towards(self, p: Union[Unit, Pointlike], distance: Union[int, float] = 1, limit: bool = False) -> Pointlike:
 | 
						|
        """
 | 
						|
 | 
						|
        :param p:
 | 
						|
        :param distance:
 | 
						|
        :param limit:
 | 
						|
        """
 | 
						|
        p = p.position
 | 
						|
        # assert self != p, f"self is {self}, p is {p}"
 | 
						|
        # TODO test and fix this if statement
 | 
						|
        if self == p:
 | 
						|
            return self
 | 
						|
        # end of test
 | 
						|
        d = self.distance_to(p)
 | 
						|
        if limit:
 | 
						|
            distance = min(d, distance)
 | 
						|
        return self.__class__(
 | 
						|
            a + (b - a) / d * distance for a, b in itertools.zip_longest(self, p[:len(self)], fillvalue=0)
 | 
						|
        )
 | 
						|
 | 
						|
    def __eq__(self, other):
 | 
						|
        try:
 | 
						|
            return all(abs(a - b) <= EPSILON for a, b in itertools.zip_longest(self, other, fillvalue=0))
 | 
						|
        except TypeError:
 | 
						|
            return False
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        return hash(tuple(self))
 | 
						|
 | 
						|
 | 
						|
# pylint: disable=R0904
 | 
						|
class Point2(Pointlike):
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_proto(cls, data) -> Point2:
 | 
						|
        """
 | 
						|
        :param data:
 | 
						|
        """
 | 
						|
        return cls((data.x, data.y))
 | 
						|
 | 
						|
    @property
 | 
						|
    def as_Point2D(self) -> common_pb.Point2D:
 | 
						|
        return common_pb.Point2D(x=self.x, y=self.y)
 | 
						|
 | 
						|
    @property
 | 
						|
    def as_PointI(self) -> common_pb.PointI:
 | 
						|
        """Represents points on the minimap. Values must be between 0 and 64."""
 | 
						|
        return common_pb.PointI(x=self.x, y=self.y)
 | 
						|
 | 
						|
    @property
 | 
						|
    def rounded(self) -> Point2:
 | 
						|
        return Point2((math.floor(self[0]), math.floor(self[1])))
 | 
						|
 | 
						|
    @property
 | 
						|
    def length(self) -> float:
 | 
						|
        """ This property exists in case Point2 is used as a vector. """
 | 
						|
        return math.hypot(self[0], self[1])
 | 
						|
 | 
						|
    @property
 | 
						|
    def normalized(self) -> Point2:
 | 
						|
        """ This property exists in case Point2 is used as a vector. """
 | 
						|
        length = self.length
 | 
						|
        # Cannot normalize if length is zero
 | 
						|
        assert length
 | 
						|
        return self.__class__((self[0] / length, self[1] / length))
 | 
						|
 | 
						|
    @property
 | 
						|
    def x(self) -> float:
 | 
						|
        return self[0]
 | 
						|
 | 
						|
    @property
 | 
						|
    def y(self) -> float:
 | 
						|
        return self[1]
 | 
						|
 | 
						|
    @property
 | 
						|
    def to2(self) -> Point2:
 | 
						|
        return Point2(self[:2])
 | 
						|
 | 
						|
    @property
 | 
						|
    def to3(self) -> Point3:
 | 
						|
        return Point3((*self, 0))
 | 
						|
 | 
						|
    def round(self, decimals: int) -> Point2:
 | 
						|
        """Rounds each number in the tuple to the amount of given decimals."""
 | 
						|
        return Point2((round(self[0], decimals), round(self[1], decimals)))
 | 
						|
 | 
						|
    def offset(self, p: Point2) -> Point2:
 | 
						|
        return Point2((self[0] + p[0], self[1] + p[1]))
 | 
						|
 | 
						|
    def random_on_distance(self, distance) -> Point2:
 | 
						|
        if isinstance(distance, (tuple, list)):  # interval
 | 
						|
            distance = distance[0] + random.random() * (distance[1] - distance[0])
 | 
						|
 | 
						|
        assert distance > 0, "Distance is not greater than 0"
 | 
						|
        angle = random.random() * 2 * math.pi
 | 
						|
 | 
						|
        dx, dy = math.cos(angle), math.sin(angle)
 | 
						|
        return Point2((self.x + dx * distance, self.y + dy * distance))
 | 
						|
 | 
						|
    def towards_with_random_angle(
 | 
						|
        self,
 | 
						|
        p: Union[Point2, Point3],
 | 
						|
        distance: Union[int, float] = 1,
 | 
						|
        max_difference: Union[int, float] = (math.pi / 4),
 | 
						|
    ) -> Point2:
 | 
						|
        tx, ty = self.to2.towards(p.to2, 1)
 | 
						|
        angle = math.atan2(ty - self.y, tx - self.x)
 | 
						|
        angle = (angle - max_difference) + max_difference * 2 * random.random()
 | 
						|
        return Point2((self.x + math.cos(angle) * distance, self.y + math.sin(angle) * distance))
 | 
						|
 | 
						|
    def circle_intersection(self, p: Point2, r: Union[int, float]) -> Set[Point2]:
 | 
						|
        """self is point1, p is point2, r is the radius for circles originating in both points
 | 
						|
        Used in ramp finding
 | 
						|
 | 
						|
        :param p:
 | 
						|
        :param r:"""
 | 
						|
        assert self != p, "self is equal to p"
 | 
						|
        distanceBetweenPoints = self.distance_to(p)
 | 
						|
        assert r >= distanceBetweenPoints / 2
 | 
						|
        # remaining distance from center towards the intersection, using pythagoras
 | 
						|
        remainingDistanceFromCenter = (r**2 - (distanceBetweenPoints / 2)**2)**0.5
 | 
						|
        # center of both points
 | 
						|
        offsetToCenter = Point2(((p.x - self.x) / 2, (p.y - self.y) / 2))
 | 
						|
        center = self.offset(offsetToCenter)
 | 
						|
 | 
						|
        # stretch offset vector in the ratio of remaining distance from center to intersection
 | 
						|
        vectorStretchFactor = remainingDistanceFromCenter / (distanceBetweenPoints / 2)
 | 
						|
        v = offsetToCenter
 | 
						|
        offsetToCenterStretched = Point2((v.x * vectorStretchFactor, v.y * vectorStretchFactor))
 | 
						|
 | 
						|
        # rotate vector by 90° and -90°
 | 
						|
        vectorRotated1 = Point2((offsetToCenterStretched.y, -offsetToCenterStretched.x))
 | 
						|
        vectorRotated2 = Point2((-offsetToCenterStretched.y, offsetToCenterStretched.x))
 | 
						|
        intersect1 = center.offset(vectorRotated1)
 | 
						|
        intersect2 = center.offset(vectorRotated2)
 | 
						|
        return {intersect1, intersect2}
 | 
						|
 | 
						|
    @property
 | 
						|
    def neighbors4(self) -> set:
 | 
						|
        return {
 | 
						|
            Point2((self.x - 1, self.y)),
 | 
						|
            Point2((self.x + 1, self.y)),
 | 
						|
            Point2((self.x, self.y - 1)),
 | 
						|
            Point2((self.x, self.y + 1)),
 | 
						|
        }
 | 
						|
 | 
						|
    @property
 | 
						|
    def neighbors8(self) -> set:
 | 
						|
        return self.neighbors4 | {
 | 
						|
            Point2((self.x - 1, self.y - 1)),
 | 
						|
            Point2((self.x - 1, self.y + 1)),
 | 
						|
            Point2((self.x + 1, self.y - 1)),
 | 
						|
            Point2((self.x + 1, self.y + 1)),
 | 
						|
        }
 | 
						|
 | 
						|
    def negative_offset(self, other: Point2) -> Point2:
 | 
						|
        return self.__class__((self[0] - other[0], self[1] - other[1]))
 | 
						|
 | 
						|
    def __add__(self, other: Point2) -> Point2:
 | 
						|
        return self.offset(other)
 | 
						|
 | 
						|
    def __sub__(self, other: Point2) -> Point2:
 | 
						|
        return self.negative_offset(other)
 | 
						|
 | 
						|
    def __neg__(self) -> Point2:
 | 
						|
        return self.__class__(-a for a in self)
 | 
						|
 | 
						|
    def __abs__(self) -> float:
 | 
						|
        return math.hypot(self.x, self.y)
 | 
						|
 | 
						|
    def __bool__(self) -> bool:
 | 
						|
        if self.x != 0 or self.y != 0:
 | 
						|
            return True
 | 
						|
        return False
 | 
						|
 | 
						|
    def __mul__(self, other: Union[int, float, Point2]) -> Point2:
 | 
						|
        try:
 | 
						|
            return self.__class__((self.x * other.x, self.y * other.y))
 | 
						|
        except AttributeError:
 | 
						|
            return self.__class__((self.x * other, self.y * other))
 | 
						|
 | 
						|
    def __rmul__(self, other: Union[int, float, Point2]) -> Point2:
 | 
						|
        return self.__mul__(other)
 | 
						|
 | 
						|
    def __truediv__(self, other: Union[int, float, Point2]) -> Point2:
 | 
						|
        if isinstance(other, self.__class__):
 | 
						|
            return self.__class__((self.x / other.x, self.y / other.y))
 | 
						|
        return self.__class__((self.x / other, self.y / other))
 | 
						|
 | 
						|
    def is_same_as(self, other: Point2, dist=0.001) -> bool:
 | 
						|
        return self.distance_to_point2(other) <= dist
 | 
						|
 | 
						|
    def direction_vector(self, other: Point2) -> Point2:
 | 
						|
        """ Converts a vector to a direction that can face vertically, horizontally or diagonal or be zero, e.g. (0, 0), (1, -1), (1, 0) """
 | 
						|
        return self.__class__((_sign(other.x - self.x), _sign(other.y - self.y)))
 | 
						|
 | 
						|
    def manhattan_distance(self, other: Point2) -> float:
 | 
						|
        """
 | 
						|
        :param other:
 | 
						|
        """
 | 
						|
        return abs(other.x - self.x) + abs(other.y - self.y)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def center(points: List[Point2]) -> Point2:
 | 
						|
        """Returns the central point for points in list
 | 
						|
 | 
						|
        :param points:"""
 | 
						|
        s = Point2((0, 0))
 | 
						|
        for p in points:
 | 
						|
            s += p
 | 
						|
        return s / len(points)
 | 
						|
 | 
						|
 | 
						|
class Point3(Point2):
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_proto(cls, data) -> Point3:
 | 
						|
        """
 | 
						|
        :param data:
 | 
						|
        """
 | 
						|
        return cls((data.x, data.y, data.z))
 | 
						|
 | 
						|
    @property
 | 
						|
    def as_Point(self) -> common_pb.Point:
 | 
						|
        return common_pb.Point(x=self.x, y=self.y, z=self.z)
 | 
						|
 | 
						|
    @property
 | 
						|
    def rounded(self) -> Point3:
 | 
						|
        return Point3((math.floor(self[0]), math.floor(self[1]), math.floor(self[2])))
 | 
						|
 | 
						|
    @property
 | 
						|
    def z(self) -> float:
 | 
						|
        return self[2]
 | 
						|
 | 
						|
    @property
 | 
						|
    def to3(self) -> Point3:
 | 
						|
        return Point3(self)
 | 
						|
 | 
						|
    def __add__(self, other: Union[Point2, Point3]) -> Point3:
 | 
						|
        if not isinstance(other, Point3) and isinstance(other, Point2):
 | 
						|
            return Point3((self.x + other.x, self.y + other.y, self.z))
 | 
						|
        return Point3((self.x + other.x, self.y + other.y, self.z + other.z))
 | 
						|
 | 
						|
 | 
						|
class Size(Point2):
 | 
						|
 | 
						|
    @property
 | 
						|
    def width(self) -> float:
 | 
						|
        return self[0]
 | 
						|
 | 
						|
    @property
 | 
						|
    def height(self) -> float:
 | 
						|
        return self[1]
 | 
						|
 | 
						|
 | 
						|
class Rect(tuple):
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_proto(cls, data):
 | 
						|
        """
 | 
						|
        :param data:
 | 
						|
        """
 | 
						|
        assert data.p0.x < data.p1.x and data.p0.y < data.p1.y
 | 
						|
        return cls((data.p0.x, data.p0.y, data.p1.x - data.p0.x, data.p1.y - data.p0.y))
 | 
						|
 | 
						|
    @property
 | 
						|
    def x(self) -> float:
 | 
						|
        return self[0]
 | 
						|
 | 
						|
    @property
 | 
						|
    def y(self) -> float:
 | 
						|
        return self[1]
 | 
						|
 | 
						|
    @property
 | 
						|
    def width(self) -> float:
 | 
						|
        return self[2]
 | 
						|
 | 
						|
    @property
 | 
						|
    def height(self) -> float:
 | 
						|
        return self[3]
 | 
						|
 | 
						|
    @property
 | 
						|
    def right(self) -> float:
 | 
						|
        """ Returns the x-coordinate of the rectangle of its right side. """
 | 
						|
        return self.x + self.width
 | 
						|
 | 
						|
    @property
 | 
						|
    def top(self) -> float:
 | 
						|
        """ Returns the y-coordinate of the rectangle of its top side. """
 | 
						|
        return self.y + self.height
 | 
						|
 | 
						|
    @property
 | 
						|
    def size(self) -> Size:
 | 
						|
        return Size((self[2], self[3]))
 | 
						|
 | 
						|
    @property
 | 
						|
    def center(self) -> Point2:
 | 
						|
        return Point2((self.x + self.width / 2, self.y + self.height / 2))
 | 
						|
 | 
						|
    def offset(self, p):
 | 
						|
        return self.__class__((self[0] + p[0], self[1] + p[1], self[2], self[3]))
 |