596 lines
28 KiB
Python
596 lines
28 KiB
Python
import logging
|
|
import typing
|
|
import collections
|
|
import itertools
|
|
from collections import Counter, deque
|
|
|
|
|
|
from BaseClasses import CollectionState, Location, LocationProgressType, MultiWorld, Item
|
|
|
|
from worlds.AutoWorld import call_all
|
|
|
|
|
|
class FillError(RuntimeError):
|
|
pass
|
|
|
|
|
|
def sweep_from_pool(base_state: CollectionState, itempool):
|
|
new_state = base_state.copy()
|
|
for item in itempool:
|
|
new_state.collect(item, True)
|
|
new_state.sweep_for_events()
|
|
return new_state
|
|
|
|
|
|
def fill_restrictive(world: MultiWorld, base_state: CollectionState, locations, itempool: typing.List[Item],
|
|
single_player_placement=False, lock=False):
|
|
unplaced_items = []
|
|
placements = []
|
|
|
|
swapped_items = Counter()
|
|
reachable_items: typing.Dict[int, deque] = {}
|
|
for item in itempool:
|
|
reachable_items.setdefault(item.player, deque()).append(item)
|
|
|
|
while any(reachable_items.values()) and locations:
|
|
# grab one item per player
|
|
items_to_place = [items.pop()
|
|
for items in reachable_items.values() if items]
|
|
for item in items_to_place:
|
|
itempool.remove(item)
|
|
maximum_exploration_state = sweep_from_pool(base_state, itempool)
|
|
has_beaten_game = world.has_beaten_game(maximum_exploration_state)
|
|
|
|
for item_to_place in items_to_place:
|
|
spot_to_fill: typing.Optional[Location] = None
|
|
if world.accessibility[item_to_place.player] == 'minimal':
|
|
perform_access_check = not world.has_beaten_game(maximum_exploration_state,
|
|
item_to_place.player) if single_player_placement else not has_beaten_game
|
|
else:
|
|
perform_access_check = True
|
|
|
|
for i, location in enumerate(locations):
|
|
if (not single_player_placement or location.player == item_to_place.player) \
|
|
and location.can_fill(maximum_exploration_state, item_to_place, perform_access_check):
|
|
# poping by index is faster than removing by content,
|
|
spot_to_fill = locations.pop(i)
|
|
# skipping a scan for the element
|
|
break
|
|
|
|
else:
|
|
# we filled all reachable spots.
|
|
# try swapping this item with previously placed items
|
|
for(i, location) in enumerate(placements):
|
|
placed_item = location.item
|
|
# Unplaceable items can sometimes be swapped infinitely. Limit the
|
|
# number of times we will swap an individual item to prevent this
|
|
if swapped_items[placed_item.player, placed_item.name] > 0:
|
|
continue
|
|
location.item = None
|
|
placed_item.location = None
|
|
swap_state = sweep_from_pool(base_state, itempool)
|
|
if (not single_player_placement or location.player == item_to_place.player) \
|
|
and location.can_fill(swap_state, item_to_place, perform_access_check):
|
|
# Add this item to the existing placement, and
|
|
# add the old item to the back of the queue
|
|
spot_to_fill = placements.pop(i)
|
|
swapped_items[placed_item.player,
|
|
placed_item.name] += 1
|
|
reachable_items[placed_item.player].appendleft(
|
|
placed_item)
|
|
itempool.append(placed_item)
|
|
break
|
|
else:
|
|
# Item can't be placed here, restore original item
|
|
location.item = placed_item
|
|
placed_item.location = location
|
|
|
|
if spot_to_fill is None:
|
|
# Maybe the game can be beaten anyway?
|
|
unplaced_items.append(item_to_place)
|
|
if world.accessibility[item_to_place.player] != 'minimal' and world.can_beat_game():
|
|
logging.warning(
|
|
f'Not all items placed. Game beatable anyway. (Could not place {item_to_place})')
|
|
continue
|
|
raise FillError(f'No more spots to place {item_to_place}, locations {locations} are invalid. '
|
|
f'Already placed {len(placements)}: {", ".join(str(place) for place in placements)}')
|
|
|
|
world.push_item(spot_to_fill, item_to_place, False)
|
|
spot_to_fill.locked = lock
|
|
placements.append(spot_to_fill)
|
|
spot_to_fill.event = True
|
|
|
|
itempool.extend(unplaced_items)
|
|
|
|
|
|
def distribute_items_restrictive(world: MultiWorld):
|
|
fill_locations = sorted(world.get_unfilled_locations())
|
|
world.random.shuffle(fill_locations)
|
|
|
|
# get items to distribute
|
|
itempool = sorted(world.itempool)
|
|
world.random.shuffle(itempool)
|
|
progitempool = []
|
|
nonexcludeditempool = []
|
|
localrestitempool = {player: [] for player in range(1, world.players + 1)}
|
|
nonlocalrestitempool = []
|
|
restitempool = []
|
|
|
|
for item in itempool:
|
|
if item.advancement:
|
|
progitempool.append(item)
|
|
elif item.never_exclude: # this only gets nonprogression items which should not appear in excluded locations
|
|
nonexcludeditempool.append(item)
|
|
elif item.name in world.local_items[item.player].value:
|
|
localrestitempool[item.player].append(item)
|
|
elif item.name in world.non_local_items[item.player].value:
|
|
nonlocalrestitempool.append(item)
|
|
else:
|
|
restitempool.append(item)
|
|
|
|
call_all(world, "fill_hook", progitempool, nonexcludeditempool,
|
|
localrestitempool, nonlocalrestitempool, restitempool, fill_locations)
|
|
|
|
locations: typing.Dict[LocationProgressType, typing.List[Location]] = {
|
|
type: [] for type in LocationProgressType}
|
|
|
|
for loc in fill_locations:
|
|
locations[loc.progress_type].append(loc)
|
|
|
|
prioritylocations = locations[LocationProgressType.PRIORITY]
|
|
defaultlocations = locations[LocationProgressType.DEFAULT]
|
|
excludedlocations = locations[LocationProgressType.EXCLUDED]
|
|
|
|
fill_restrictive(world, world.state, prioritylocations, progitempool)
|
|
if prioritylocations:
|
|
defaultlocations = prioritylocations + defaultlocations
|
|
|
|
if progitempool:
|
|
fill_restrictive(world, world.state, defaultlocations, progitempool)
|
|
if(len(progitempool) > 0):
|
|
raise FillError(
|
|
f'Not enough locations for progress items. There are {len(progitempool)} more items than locations')
|
|
|
|
if nonexcludeditempool:
|
|
world.random.shuffle(defaultlocations)
|
|
# needs logical fill to not conflict with local items
|
|
nonexcludeditempool, defaultlocations = fast_fill(
|
|
world, nonexcludeditempool, defaultlocations)
|
|
if(len(nonexcludeditempool) > 0):
|
|
raise FillError(
|
|
f'Not enough locations for non-excluded items. There are {len(nonexcludeditempool)} more items than locations')
|
|
|
|
defaultlocations = defaultlocations + excludedlocations
|
|
world.random.shuffle(defaultlocations)
|
|
|
|
if any(localrestitempool.values()): # we need to make sure some fills are limited to certain worlds
|
|
local_locations = {player: [] for player in world.player_ids}
|
|
for location in defaultlocations:
|
|
local_locations[location.player].append(location)
|
|
for player_locations in local_locations.values():
|
|
world.random.shuffle(player_locations)
|
|
|
|
for player, items in localrestitempool.items(): # items already shuffled
|
|
player_local_locations = local_locations[player]
|
|
for item_to_place in items:
|
|
if not player_local_locations:
|
|
logging.warning(f"Ran out of local locations for player {player}, "
|
|
f"cannot place {item_to_place}.")
|
|
break
|
|
spot_to_fill = player_local_locations.pop()
|
|
world.push_item(spot_to_fill, item_to_place, False)
|
|
defaultlocations.remove(spot_to_fill)
|
|
|
|
for item_to_place in nonlocalrestitempool:
|
|
for i, location in enumerate(defaultlocations):
|
|
if location.player != item_to_place.player:
|
|
world.push_item(defaultlocations.pop(i), item_to_place, False)
|
|
break
|
|
else:
|
|
logging.warning(
|
|
f"Could not place non_local_item {item_to_place} among {defaultlocations}, tossing.")
|
|
|
|
world.random.shuffle(defaultlocations)
|
|
|
|
restitempool, defaultlocations = fast_fill(
|
|
world, restitempool, defaultlocations)
|
|
unplaced = progitempool + restitempool
|
|
unfilled = [location.name for location in defaultlocations]
|
|
|
|
if unplaced or unfilled:
|
|
logging.warning(
|
|
f'Unplaced items({len(unplaced)}): {unplaced} - Unfilled Locations({len(unfilled)}): {unfilled}')
|
|
items_counter = Counter([location.item.player for location in world.get_locations()])
|
|
locations_counter = Counter([location.player for location in world.get_locations()])
|
|
items_counter.update([item.player for item in unplaced])
|
|
locations_counter.update([location.player for location in unfilled])
|
|
print_data = {"items": items_counter, "locations": locations_counter}
|
|
logging.info(f'Per-Player counts: {print_data})')
|
|
|
|
|
|
def fast_fill(world: MultiWorld, item_pool: typing.List, fill_locations: typing.List) -> typing.Tuple[typing.List, typing.List]:
|
|
placing = min(len(item_pool), len(fill_locations))
|
|
for item, location in zip(item_pool, fill_locations):
|
|
world.push_item(location, item, False)
|
|
return item_pool[placing:], fill_locations[placing:]
|
|
|
|
|
|
def flood_items(world: MultiWorld):
|
|
# get items to distribute
|
|
world.random.shuffle(world.itempool)
|
|
itempool = world.itempool
|
|
progress_done = False
|
|
|
|
# sweep once to pick up preplaced items
|
|
world.state.sweep_for_events()
|
|
|
|
# fill world from top of itempool while we can
|
|
while not progress_done:
|
|
location_list = world.get_unfilled_locations()
|
|
world.random.shuffle(location_list)
|
|
spot_to_fill = None
|
|
for location in location_list:
|
|
if location.can_fill(world.state, itempool[0]):
|
|
spot_to_fill = location
|
|
break
|
|
|
|
if spot_to_fill:
|
|
item = itempool.pop(0)
|
|
world.push_item(spot_to_fill, item, True)
|
|
continue
|
|
|
|
# ran out of spots, check if we need to step in and correct things
|
|
if len(world.get_reachable_locations()) == len(world.get_locations()):
|
|
progress_done = True
|
|
continue
|
|
|
|
# need to place a progress item instead of an already placed item, find candidate
|
|
item_to_place = None
|
|
candidate_item_to_place = None
|
|
for item in itempool:
|
|
if item.advancement:
|
|
candidate_item_to_place = item
|
|
if world.unlocks_new_location(item):
|
|
item_to_place = item
|
|
break
|
|
|
|
# we might be in a situation where all new locations require multiple items to reach. If that is the case, just place any advancement item we've found and continue trying
|
|
if item_to_place is None:
|
|
if candidate_item_to_place is not None:
|
|
item_to_place = candidate_item_to_place
|
|
else:
|
|
raise FillError('No more progress items left to place.')
|
|
|
|
# find item to replace with progress item
|
|
location_list = world.get_reachable_locations()
|
|
world.random.shuffle(location_list)
|
|
for location in location_list:
|
|
if location.item is not None and not location.item.advancement:
|
|
# safe to replace
|
|
replace_item = location.item
|
|
replace_item.location = None
|
|
itempool.append(replace_item)
|
|
world.push_item(location, item_to_place, True)
|
|
itempool.remove(item_to_place)
|
|
break
|
|
|
|
|
|
def balance_multiworld_progression(world: MultiWorld):
|
|
balanceable_players = {player for player in range(1, world.players + 1) if world.progression_balancing[player]}
|
|
if not balanceable_players:
|
|
logging.info('Skipping multiworld progression balancing.')
|
|
else:
|
|
logging.info(f'Balancing multiworld progression for {len(balanceable_players)} Players.')
|
|
state = CollectionState(world)
|
|
checked_locations = set()
|
|
unchecked_locations = set(world.get_locations())
|
|
|
|
reachable_locations_count = {player: 0 for player in world.player_ids}
|
|
|
|
def get_sphere_locations(sphere_state, locations):
|
|
sphere_state.sweep_for_events(key_only=True, locations=locations)
|
|
return {loc for loc in locations if sphere_state.can_reach(loc)}
|
|
|
|
while True:
|
|
sphere_locations = get_sphere_locations(state, unchecked_locations)
|
|
for location in sphere_locations:
|
|
unchecked_locations.remove(location)
|
|
reachable_locations_count[location.player] += 1
|
|
|
|
if checked_locations:
|
|
threshold = max(reachable_locations_count.values()) - 20
|
|
balancing_players = {player for player, reachables in reachable_locations_count.items() if
|
|
reachables < threshold and player in balanceable_players}
|
|
if balancing_players:
|
|
balancing_state = state.copy()
|
|
balancing_unchecked_locations = unchecked_locations.copy()
|
|
balancing_reachables = reachable_locations_count.copy()
|
|
balancing_sphere = sphere_locations.copy()
|
|
candidate_items = collections.defaultdict(set)
|
|
while True:
|
|
for location in balancing_sphere:
|
|
if location.event:
|
|
balancing_state.collect(location.item, True, location)
|
|
player = location.item.player
|
|
# only replace items that end up in another player's world
|
|
if(not location.locked and
|
|
player in balancing_players and
|
|
location.player != player and
|
|
location.progress_type != LocationProgressType.PRIORITY):
|
|
candidate_items[player].add(location)
|
|
balancing_sphere = get_sphere_locations(balancing_state, balancing_unchecked_locations)
|
|
for location in balancing_sphere:
|
|
balancing_unchecked_locations.remove(location)
|
|
balancing_reachables[location.player] += 1
|
|
if world.has_beaten_game(balancing_state) or all(
|
|
reachables >= threshold for reachables in balancing_reachables.values()):
|
|
break
|
|
elif not balancing_sphere:
|
|
raise RuntimeError('Not all required items reachable. Something went terribly wrong here.')
|
|
unlocked_locations = collections.defaultdict(set)
|
|
for l in unchecked_locations:
|
|
if l not in balancing_unchecked_locations:
|
|
unlocked_locations[l.player].add(l)
|
|
items_to_replace = []
|
|
for player in balancing_players:
|
|
locations_to_test = unlocked_locations[player]
|
|
items_to_test = candidate_items[player]
|
|
while items_to_test:
|
|
testing = items_to_test.pop()
|
|
reducing_state = state.copy()
|
|
for location in itertools.chain((l for l in items_to_replace if l.item.player == player),
|
|
items_to_test):
|
|
reducing_state.collect(location.item, True, location)
|
|
|
|
reducing_state.sweep_for_events(locations=locations_to_test)
|
|
|
|
if world.has_beaten_game(balancing_state):
|
|
if not world.has_beaten_game(reducing_state):
|
|
items_to_replace.append(testing)
|
|
else:
|
|
reduced_sphere = get_sphere_locations(reducing_state, locations_to_test)
|
|
if reachable_locations_count[player] + len(reduced_sphere) < threshold:
|
|
items_to_replace.append(testing)
|
|
|
|
replaced_items = False
|
|
|
|
# sort then shuffle to maintain deterministic behaviour,
|
|
# while allowing use of set for better algorithm growth behaviour elsewhere
|
|
replacement_locations = sorted(l for l in checked_locations if not l.event and not l.locked)
|
|
world.random.shuffle(replacement_locations)
|
|
items_to_replace.sort()
|
|
world.random.shuffle(items_to_replace)
|
|
|
|
while replacement_locations and items_to_replace:
|
|
old_location = items_to_replace.pop()
|
|
for new_location in replacement_locations:
|
|
if new_location.can_fill(state, old_location.item, False) and \
|
|
old_location.can_fill(state, new_location.item, False):
|
|
replacement_locations.remove(new_location)
|
|
swap_location_item(old_location, new_location)
|
|
logging.debug(f"Progression balancing moved {new_location.item} to {new_location}, "
|
|
f"displacing {old_location.item} into {old_location}")
|
|
state.collect(new_location.item, True, new_location)
|
|
replaced_items = True
|
|
break
|
|
else:
|
|
logging.warning(f"Could not Progression Balance {old_location.item}")
|
|
|
|
if replaced_items:
|
|
unlocked = {fresh for player in balancing_players for fresh in unlocked_locations[player]}
|
|
for location in get_sphere_locations(state, unlocked):
|
|
unchecked_locations.remove(location)
|
|
reachable_locations_count[location.player] += 1
|
|
sphere_locations.add(location)
|
|
|
|
for location in sphere_locations:
|
|
if location.event:
|
|
state.collect(location.item, True, location)
|
|
checked_locations |= sphere_locations
|
|
|
|
if world.has_beaten_game(state):
|
|
break
|
|
elif not sphere_locations:
|
|
logging.warning("Progression Balancing ran out of paths.")
|
|
break
|
|
|
|
|
|
def swap_location_item(location_1: Location, location_2: Location, check_locked=True):
|
|
"""Swaps Items of locations. Does NOT swap flags like shop_slot or locked, but does swap event"""
|
|
if check_locked:
|
|
if location_1.locked:
|
|
logging.warning(f"Swapping {location_1}, which is marked as locked.")
|
|
if location_2.locked:
|
|
logging.warning(f"Swapping {location_2}, which is marked as locked.")
|
|
location_2.item, location_1.item = location_1.item, location_2.item
|
|
location_1.item.location = location_1
|
|
location_2.item.location = location_2
|
|
location_1.event, location_2.event = location_2.event, location_1.event
|
|
|
|
def distribute_planned(world: MultiWorld):
|
|
def warn(warning: str, force):
|
|
if force in [True, 'fail', 'failure', 'none', False, 'warn', 'warning']:
|
|
logging.warning(f'{warning}')
|
|
else:
|
|
logging.debug(f'{warning}')
|
|
|
|
def failed(warning: str, force):
|
|
if force in [True, 'fail', 'failure']:
|
|
raise Exception(warning)
|
|
else:
|
|
warn(warning, force)
|
|
|
|
# TODO: remove. Preferably by implementing key drop
|
|
from worlds.alttp.Regions import key_drop_data
|
|
world_name_lookup = world.world_name_lookup
|
|
|
|
plando_blocks = []
|
|
player_ids = set(world.player_ids)
|
|
for player in player_ids:
|
|
for block in world.plando_items[player]:
|
|
block['player'] = player
|
|
if 'force' not in block:
|
|
block['force'] = 'silent'
|
|
if 'from_pool' not in block:
|
|
block['from_pool'] = True
|
|
if 'world' not in block:
|
|
block['world'] = False
|
|
items = []
|
|
if "items" in block:
|
|
items = block["items"]
|
|
if 'count' not in block:
|
|
block['count'] = False
|
|
elif "item" in block:
|
|
items = block["item"]
|
|
if 'count' not in block:
|
|
block['count'] = 1
|
|
else:
|
|
failed("You must specify at least one item to place items with plando.", block['force'])
|
|
continue
|
|
if isinstance(items, dict):
|
|
item_list = []
|
|
for key, value in items.items():
|
|
if value is True:
|
|
value = world.itempool.count(world.worlds[player].create_item(key))
|
|
item_list += [key] * value
|
|
items = item_list
|
|
if isinstance(items, str):
|
|
items = [items]
|
|
block['items'] = items
|
|
|
|
locations = []
|
|
if 'location' in block:
|
|
locations = block['location'] # just allow 'location' to keep old yamls compatible
|
|
elif 'locations' in block:
|
|
locations = block['locations']
|
|
if isinstance(locations, str):
|
|
locations = [locations]
|
|
|
|
if isinstance(locations, dict):
|
|
location_list = []
|
|
for key, value in locations.items():
|
|
location_list += [key] * value
|
|
locations = location_list
|
|
if isinstance(locations, str):
|
|
locations = [locations]
|
|
block['locations'] = locations
|
|
|
|
if not block['count']:
|
|
block['count'] = (min(len(block['items']), len(block['locations'])) if len(block['locations'])
|
|
> 0 else len(block['items']))
|
|
if isinstance(block['count'], int):
|
|
block['count'] = {'min': block['count'], 'max': block['count']}
|
|
if 'min' not in block['count']:
|
|
block['count']['min'] = 0
|
|
if 'max' not in block['count']:
|
|
block['count']['max'] = (min(len(block['items']), len(block['locations'])) if len(block['locations'])
|
|
> 0 else len(block['items']))
|
|
if block['count']['max'] > len(block['items']):
|
|
count = block['count']
|
|
failed(f"Plando count {count} greater than items specified", block['force'])
|
|
block['count'] = len(block['items'])
|
|
if block['count']['max'] > len(block['locations']) > 0:
|
|
count = block['count']
|
|
failed(f"Plando count {count} greater than locations specified", block['force'])
|
|
block['count'] = len(block['locations'])
|
|
block['count']['target'] = world.random.randint(block['count']['min'], block['count']['max'])
|
|
|
|
if block['count']['target'] > 0:
|
|
plando_blocks.append(block)
|
|
|
|
# shuffle, but then sort blocks by number of locations minus number of items,
|
|
# so less-flexible blocks get priority
|
|
world.random.shuffle(plando_blocks)
|
|
plando_blocks.sort(key=lambda block: (len(block['locations']) - block['count']['target']
|
|
if len(block['locations']) > 0
|
|
else len(world.get_unfilled_locations(player)) - block['count']['target']))
|
|
|
|
for placement in plando_blocks:
|
|
player = placement['player']
|
|
try:
|
|
target_world = placement['world']
|
|
locations = placement['locations']
|
|
items = placement['items']
|
|
maxcount = placement['count']['target']
|
|
from_pool = placement['from_pool']
|
|
if target_world is False or world.players == 1: # target own world
|
|
worlds = {player}
|
|
elif target_world is True: # target any worlds besides own
|
|
worlds = set(world.player_ids) - {player}
|
|
elif target_world is None: # target all worlds
|
|
worlds = set(world.player_ids)
|
|
elif type(target_world) == list: # list of target worlds
|
|
worlds = []
|
|
for listed_world in target_world:
|
|
if listed_world not in world_name_lookup:
|
|
failed(f"Cannot place item to {target_world}'s world as that world does not exist.",
|
|
placement['force'])
|
|
continue
|
|
worlds.append(world_name_lookup[listed_world])
|
|
worlds = set(worlds)
|
|
elif type(target_world) == int: # target world by slot number
|
|
if target_world not in range(1, world.players + 1):
|
|
failed(
|
|
f"Cannot place item in world {target_world} as it is not in range of (1, {world.players})",
|
|
placement['force'])
|
|
continue
|
|
worlds = {target_world}
|
|
else: # target world by slot name
|
|
if target_world not in world_name_lookup:
|
|
failed(f"Cannot place item to {target_world}'s world as that world does not exist.",
|
|
placement['force'])
|
|
continue
|
|
worlds = {world_name_lookup[target_world]}
|
|
|
|
candidates = list(location for location in world.get_unfilled_locations_for_players(locations,
|
|
worlds))
|
|
world.random.shuffle(candidates)
|
|
world.random.shuffle(items)
|
|
count = 0
|
|
err = []
|
|
successful_pairs = []
|
|
for item_name in items:
|
|
item = world.worlds[player].create_item(item_name)
|
|
for location in reversed(candidates):
|
|
if location in key_drop_data:
|
|
warn(
|
|
f"Can't place '{item_name}' at '{placement.location}', as key drop shuffle locations are not supported yet.")
|
|
continue
|
|
if not location.item:
|
|
if location.item_rule(item):
|
|
if location.can_fill(world.state, item, False):
|
|
successful_pairs.append([item, location])
|
|
candidates.remove(location)
|
|
count = count + 1
|
|
break
|
|
else:
|
|
err.append(f"Can't place item at {location} due to fill condition not met.")
|
|
else:
|
|
err.append(f"{item_name} not allowed at {location}.")
|
|
else:
|
|
err.append(f"Cannot place {item_name} into already filled location {location}.")
|
|
if count == maxcount:
|
|
break
|
|
if count < placement['count']['min']:
|
|
err = " ".join(err)
|
|
m = placement['count']['min']
|
|
failed(
|
|
f"Plando block failed to place {m - count} of {m} item(s) for {world.player_name[player]}, error(s): {err}",
|
|
placement['force'])
|
|
for (item, location) in successful_pairs:
|
|
world.push_item(location, item, collect=False)
|
|
location.event = True # flag location to be checked during fill
|
|
location.locked = True
|
|
logging.debug(f"Plando placed {item} at {location}")
|
|
if from_pool:
|
|
try:
|
|
world.itempool.remove(item)
|
|
except ValueError:
|
|
warn(
|
|
f"Could not remove {item} from pool for {world.player_name[player]} as it's already missing from it.",
|
|
placement['force'])
|
|
|
|
except Exception as e:
|
|
raise Exception(
|
|
f"Error running plando for player {player} ({world.player_name[player]})") from e
|