Archipelago/Fill.py

721 lines
34 KiB
Python

import logging
import typing
import collections
import itertools
from collections import Counter, deque
from BaseClasses import CollectionState, Location, LocationProgressType, MultiWorld, Item
from worlds.AutoWorld import call_all
class FillError(RuntimeError):
pass
def sweep_from_pool(base_state: CollectionState, itempool: typing.Sequence[Item] = tuple()) -> CollectionState:
new_state = base_state.copy()
for item in itempool:
new_state.collect(item, True)
new_state.sweep_for_events()
return new_state
def fill_restrictive(world: MultiWorld, base_state: CollectionState, locations: typing.List[Location],
itempool: typing.List[Item], single_player_placement: bool = False, lock: bool = False) -> None:
unplaced_items: typing.List[Item] = []
placements: typing.List[Location] = []
swapped_items: typing.Counter[typing.Tuple[int, str]] = Counter()
reachable_items: typing.Dict[int, typing.Deque[Item]] = {}
for item in itempool:
reachable_items.setdefault(item.player, deque()).append(item)
while any(reachable_items.values()) and locations:
# grab one item per player
items_to_place = [items.pop()
for items in reachable_items.values() if items]
for item in items_to_place:
itempool.remove(item)
maximum_exploration_state = sweep_from_pool(
base_state, itempool + unplaced_items)
has_beaten_game = world.has_beaten_game(maximum_exploration_state)
while items_to_place:
# if we have run out of locations to fill,break out of this loop
if not locations:
unplaced_items += items_to_place
break
item_to_place = items_to_place.pop(0)
spot_to_fill: typing.Optional[Location] = None
# if minimal accessibility, only check whether location is reachable if game not beatable
if world.accessibility[item_to_place.player] == 'minimal':
perform_access_check = not world.has_beaten_game(maximum_exploration_state,
item_to_place.player) \
if single_player_placement else not has_beaten_game
else:
perform_access_check = True
for i, location in enumerate(locations):
if (not single_player_placement or location.player == item_to_place.player) \
and location.can_fill(maximum_exploration_state, item_to_place, perform_access_check):
# popping by index is faster than removing by content,
spot_to_fill = locations.pop(i)
# skipping a scan for the element
break
else:
# we filled all reachable spots.
# try swapping this item with previously placed items
for (i, location) in enumerate(placements):
placed_item = location.item
# Unplaceable items can sometimes be swapped infinitely. Limit the
# number of times we will swap an individual item to prevent this
swap_count = swapped_items[placed_item.player,
placed_item.name]
if swap_count > 1:
continue
location.item = None
placed_item.location = None
swap_state = sweep_from_pool(base_state)
if (not single_player_placement or location.player == item_to_place.player) \
and location.can_fill(swap_state, item_to_place, perform_access_check):
# Verify that placing this item won't reduce available locations
prev_state = swap_state.copy()
prev_state.collect(placed_item)
prev_loc_count = len(
world.get_reachable_locations(prev_state))
swap_state.collect(item_to_place, True)
new_loc_count = len(
world.get_reachable_locations(swap_state))
if new_loc_count >= prev_loc_count:
# Add this item to the existing placement, and
# add the old item to the back of the queue
spot_to_fill = placements.pop(i)
swap_count += 1
swapped_items[placed_item.player,
placed_item.name] = swap_count
reachable_items[placed_item.player].appendleft(
placed_item)
itempool.append(placed_item)
break
# Item can't be placed here, restore original item
location.item = placed_item
placed_item.location = location
if spot_to_fill is None:
# Can't place this item, move on to the next
unplaced_items.append(item_to_place)
continue
world.push_item(spot_to_fill, item_to_place, False)
spot_to_fill.locked = lock
placements.append(spot_to_fill)
spot_to_fill.event = item_to_place.advancement
if len(unplaced_items) > 0 and len(locations) > 0:
# There are leftover unplaceable items and locations that won't accept them
if world.can_beat_game():
logging.warning(
f'Not all items placed. Game beatable anyway. (Could not place {unplaced_items})')
else:
raise FillError(f'No more spots to place {unplaced_items}, locations {locations} are invalid. '
f'Already placed {len(placements)}: {", ".join(str(place) for place in placements)}')
itempool.extend(unplaced_items)
def remaining_fill(world: MultiWorld,
locations: typing.List[Location],
itempool: typing.List[Item]) -> None:
unplaced_items: typing.List[Item] = []
placements: typing.List[Location] = []
swapped_items: typing.Counter[typing.Tuple[int, str]] = Counter()
while locations and itempool:
item_to_place = itempool.pop()
spot_to_fill: typing.Optional[Location] = None
for i, location in enumerate(locations):
if location.item_rule(item_to_place):
# popping by index is faster than removing by content,
spot_to_fill = locations.pop(i)
# skipping a scan for the element
break
else:
# we filled all reachable spots.
# try swapping this item with previously placed items
for (i, location) in enumerate(placements):
placed_item = location.item
# Unplaceable items can sometimes be swapped infinitely. Limit the
# number of times we will swap an individual item to prevent this
if swapped_items[placed_item.player,
placed_item.name] > 1:
continue
location.item = None
placed_item.location = None
if location.item_rule(item_to_place):
# Add this item to the existing placement, and
# add the old item to the back of the queue
spot_to_fill = placements.pop(i)
swapped_items[placed_item.player,
placed_item.name] += 1
itempool.append(placed_item)
break
# Item can't be placed here, restore original item
location.item = placed_item
placed_item.location = location
if spot_to_fill is None:
# Can't place this item, move on to the next
unplaced_items.append(item_to_place)
continue
world.push_item(spot_to_fill, item_to_place, False)
placements.append(spot_to_fill)
if unplaced_items and locations:
# There are leftover unplaceable items and locations that won't accept them
raise FillError(f'No more spots to place {unplaced_items}, locations {locations} are invalid. '
f'Already placed {len(placements)}: {", ".join(str(place) for place in placements)}')
itempool.extend(unplaced_items)
def fast_fill(world: MultiWorld,
item_pool: typing.List[Item],
fill_locations: typing.List[Location]) -> typing.Tuple[typing.List[Item], typing.List[Location]]:
placing = min(len(item_pool), len(fill_locations))
for item, location in zip(item_pool, fill_locations):
world.push_item(location, item, False)
return item_pool[placing:], fill_locations[placing:]
def distribute_items_restrictive(world: MultiWorld) -> None:
fill_locations = sorted(world.get_unfilled_locations())
world.random.shuffle(fill_locations)
# get items to distribute
itempool = sorted(world.itempool)
world.random.shuffle(itempool)
progitempool: typing.List[Item] = []
usefulitempool: typing.List[Item] = []
filleritempool: typing.List[Item] = []
for item in itempool:
if item.advancement:
progitempool.append(item)
elif item.useful:
usefulitempool.append(item)
else:
filleritempool.append(item)
call_all(world, "fill_hook", progitempool, usefulitempool, filleritempool, fill_locations)
locations: typing.Dict[LocationProgressType, typing.List[Location]] = {
loc_type: [] for loc_type in LocationProgressType}
for loc in fill_locations:
locations[loc.progress_type].append(loc)
prioritylocations = locations[LocationProgressType.PRIORITY]
defaultlocations = locations[LocationProgressType.DEFAULT]
excludedlocations = locations[LocationProgressType.EXCLUDED]
fill_restrictive(world, world.state, prioritylocations, progitempool, lock=True)
if prioritylocations:
defaultlocations = prioritylocations + defaultlocations
if progitempool:
fill_restrictive(world, world.state, defaultlocations, progitempool)
if progitempool:
raise FillError(
f'Not enough locations for progress items. There are {len(progitempool)} more items than locations')
remaining_fill(world, excludedlocations, filleritempool)
if excludedlocations:
raise FillError(
f"Not enough filler items for excluded locations. There are {len(excludedlocations)} more locations than items")
restitempool = usefulitempool + filleritempool
remaining_fill(world, defaultlocations, restitempool)
unplaced = restitempool
unfilled = defaultlocations
if unplaced or unfilled:
logging.warning(
f'Unplaced items({len(unplaced)}): {unplaced} - Unfilled Locations({len(unfilled)}): {unfilled}')
items_counter = Counter(location.item.player for location in world.get_locations() if location.item)
locations_counter = Counter(location.player for location in world.get_locations())
items_counter.update(item.player for item in unplaced)
locations_counter.update(location.player for location in unfilled)
print_data = {"items": items_counter, "locations": locations_counter}
logging.info(f'Per-Player counts: {print_data})')
def flood_items(world: MultiWorld) -> None:
# get items to distribute
world.random.shuffle(world.itempool)
itempool = world.itempool
progress_done = False
# sweep once to pick up preplaced items
world.state.sweep_for_events()
# fill world from top of itempool while we can
while not progress_done:
location_list = world.get_unfilled_locations()
world.random.shuffle(location_list)
spot_to_fill = None
for location in location_list:
if location.can_fill(world.state, itempool[0]):
spot_to_fill = location
break
if spot_to_fill:
item = itempool.pop(0)
world.push_item(spot_to_fill, item, True)
continue
# ran out of spots, check if we need to step in and correct things
if len(world.get_reachable_locations()) == len(world.get_locations()):
progress_done = True
continue
# need to place a progress item instead of an already placed item, find candidate
item_to_place = None
candidate_item_to_place = None
for item in itempool:
if item.advancement:
candidate_item_to_place = item
if world.unlocks_new_location(item):
item_to_place = item
break
# we might be in a situation where all new locations require multiple items to reach.
# If that is the case, just place any advancement item we've found and continue trying
if item_to_place is None:
if candidate_item_to_place is not None:
item_to_place = candidate_item_to_place
else:
raise FillError('No more progress items left to place.')
# find item to replace with progress item
location_list = world.get_reachable_locations()
world.random.shuffle(location_list)
for location in location_list:
if location.item is not None and not location.item.advancement:
# safe to replace
replace_item = location.item
replace_item.location = None
itempool.append(replace_item)
world.push_item(location, item_to_place, True)
itempool.remove(item_to_place)
break
def balance_multiworld_progression(world: MultiWorld) -> None:
# A system to reduce situations where players have no checks remaining, popularly known as "BK mode."
# Overall progression balancing algorithm:
# Gather up all locations in a sphere.
# Define a threshold value based on the player with the most available locations.
# If other players are below the threshold value, swap progression in this sphere into earlier spheres,
# which gives more locations available by this sphere.
balanceable_players: typing.Dict[int, float] = {
player: world.progression_balancing[player] / 100
for player in world.player_ids
if world.progression_balancing[player] > 0
}
if not balanceable_players:
logging.info('Skipping multiworld progression balancing.')
else:
logging.info(f'Balancing multiworld progression for {len(balanceable_players)} Players.')
logging.debug(balanceable_players)
state: CollectionState = CollectionState(world)
checked_locations: typing.Set[Location] = set()
unchecked_locations: typing.Set[Location] = set(world.get_locations())
reachable_locations_count: typing.Dict[int, int] = {
player: 0
for player in world.player_ids
if len(world.get_filled_locations(player)) != 0
}
total_locations_count: typing.Counter[int] = Counter(
location.player
for location in world.get_locations()
if not location.locked
)
balanceable_players = {
player: balanceable_players[player]
for player in balanceable_players
if total_locations_count[player]
}
sphere_num: int = 1
moved_item_count: int = 0
def get_sphere_locations(sphere_state: CollectionState,
locations: typing.Set[Location]) -> typing.Set[Location]:
sphere_state.sweep_for_events(key_only=True, locations=locations)
return {loc for loc in locations if sphere_state.can_reach(loc)}
def item_percentage(player: int, num: int) -> float:
return num / total_locations_count[player]
while True:
# Gather non-locked locations.
# This ensures that only shuffled locations get counted for progression balancing,
# i.e. the items the players will be checking.
sphere_locations = get_sphere_locations(state, unchecked_locations)
for location in sphere_locations:
unchecked_locations.remove(location)
if not location.locked:
reachable_locations_count[location.player] += 1
logging.debug(f"Sphere {sphere_num}")
logging.debug(f"Reachable locations: {reachable_locations_count}")
debug_percentages = {
player: round(item_percentage(player, num), 2)
for player, num in reachable_locations_count.items()
}
logging.debug(f"Reachable percentages: {debug_percentages}\n")
sphere_num += 1
if checked_locations:
max_percentage = max(map(lambda p: item_percentage(p, reachable_locations_count[p]),
reachable_locations_count))
threshold_percentages = {
player: max_percentage * balanceable_players[player]
for player in balanceable_players
}
logging.debug(f"Thresholds: {threshold_percentages}")
balancing_players = {
player
for player, reachables in reachable_locations_count.items()
if (player in threshold_percentages
and item_percentage(player, reachables) < threshold_percentages[player])
}
if balancing_players:
balancing_state = state.copy()
balancing_unchecked_locations = unchecked_locations.copy()
balancing_reachables = reachable_locations_count.copy()
balancing_sphere = sphere_locations.copy()
candidate_items: typing.Dict[int, typing.Set[Location]] = collections.defaultdict(set)
while True:
# Check locations in the current sphere and gather progression items to swap earlier
for location in balancing_sphere:
if location.event:
balancing_state.collect(location.item, True, location)
player = location.item.player
# only replace items that end up in another player's world
if (not location.locked and not location.item.skip_in_prog_balancing and
player in balancing_players and
location.player != player and
location.progress_type != LocationProgressType.PRIORITY):
candidate_items[player].add(location)
logging.debug(f"Candidate item: {location.name}, {location.item.name}")
balancing_sphere = get_sphere_locations(balancing_state, balancing_unchecked_locations)
for location in balancing_sphere:
balancing_unchecked_locations.remove(location)
if not location.locked:
balancing_reachables[location.player] += 1
if world.has_beaten_game(balancing_state) or all(
item_percentage(player, reachables) >= threshold_percentages[player]
for player, reachables in balancing_reachables.items()
if player in threshold_percentages):
break
elif not balancing_sphere:
raise RuntimeError('Not all required items reachable. Something went terribly wrong here.')
# Gather a set of locations which we can swap items into
unlocked_locations: typing.Dict[int, typing.Set[Location]] = collections.defaultdict(set)
for l in unchecked_locations:
if l not in balancing_unchecked_locations:
unlocked_locations[l.player].add(l)
items_to_replace: typing.List[Location] = []
for player in balancing_players:
locations_to_test = unlocked_locations[player]
items_to_test = list(candidate_items[player])
items_to_test.sort()
world.random.shuffle(items_to_test)
while items_to_test:
testing = items_to_test.pop()
reducing_state = state.copy()
for location in itertools.chain((
l for l in items_to_replace
if l.item.player == player
), items_to_test):
reducing_state.collect(location.item, True, location)
reducing_state.sweep_for_events(locations=locations_to_test)
if world.has_beaten_game(balancing_state):
if not world.has_beaten_game(reducing_state):
items_to_replace.append(testing)
else:
reduced_sphere = get_sphere_locations(reducing_state, locations_to_test)
p = item_percentage(player, reachable_locations_count[player] + len(reduced_sphere))
if p < threshold_percentages[player]:
items_to_replace.append(testing)
replaced_items = False
# sort then shuffle to maintain deterministic behaviour,
# while allowing use of set for better algorithm growth behaviour elsewhere
replacement_locations = sorted(l for l in checked_locations if not l.event and not l.locked)
world.random.shuffle(replacement_locations)
items_to_replace.sort()
world.random.shuffle(items_to_replace)
# Start swapping items. Since we swap into earlier spheres, no need for accessibility checks.
while replacement_locations and items_to_replace:
old_location = items_to_replace.pop()
for new_location in replacement_locations:
if new_location.can_fill(state, old_location.item, False) and \
old_location.can_fill(state, new_location.item, False):
replacement_locations.remove(new_location)
swap_location_item(old_location, new_location)
logging.debug(f"Progression balancing moved {new_location.item} to {new_location}, "
f"displacing {old_location.item} into {old_location}")
moved_item_count += 1
state.collect(new_location.item, True, new_location)
replaced_items = True
break
else:
logging.warning(f"Could not Progression Balance {old_location.item}")
if replaced_items:
logging.debug(f"Moved {moved_item_count} items so far\n")
unlocked = {fresh for player in balancing_players for fresh in unlocked_locations[player]}
for location in get_sphere_locations(state, unlocked):
unchecked_locations.remove(location)
if not location.locked:
reachable_locations_count[location.player] += 1
sphere_locations.add(location)
for location in sphere_locations:
if location.event:
state.collect(location.item, True, location)
checked_locations |= sphere_locations
if world.has_beaten_game(state):
break
elif not sphere_locations:
logging.warning("Progression Balancing ran out of paths.")
break
def swap_location_item(location_1: Location, location_2: Location, check_locked: bool = True) -> None:
"""Swaps Items of locations. Does NOT swap flags like shop_slot or locked, but does swap event"""
if check_locked:
if location_1.locked:
logging.warning(f"Swapping {location_1}, which is marked as locked.")
if location_2.locked:
logging.warning(f"Swapping {location_2}, which is marked as locked.")
location_2.item, location_1.item = location_1.item, location_2.item
location_1.item.location = location_1
location_2.item.location = location_2
location_1.event, location_2.event = location_2.event, location_1.event
def distribute_planned(world: MultiWorld) -> None:
def warn(warning: str, force: typing.Union[bool, str]) -> None:
if force in [True, 'fail', 'failure', 'none', False, 'warn', 'warning']:
logging.warning(f'{warning}')
else:
logging.debug(f'{warning}')
def failed(warning: str, force: typing.Union[bool, str]) -> None:
if force in [True, 'fail', 'failure']:
raise Exception(warning)
else:
warn(warning, force)
# TODO: remove. Preferably by implementing key drop
from worlds.alttp.Regions import key_drop_data
world_name_lookup = world.world_name_lookup
block_value = typing.Union[typing.List[str], typing.Dict[str, typing.Any], str]
plando_blocks: typing.List[typing.Dict[str, typing.Any]] = []
player_ids = set(world.player_ids)
for player in player_ids:
for block in world.plando_items[player]:
block['player'] = player
if 'force' not in block:
block['force'] = 'silent'
if 'from_pool' not in block:
block['from_pool'] = True
if 'world' not in block:
block['world'] = False
items: block_value = []
if "items" in block:
items = block["items"]
if 'count' not in block:
block['count'] = False
elif "item" in block:
items = block["item"]
if 'count' not in block:
block['count'] = 1
else:
failed("You must specify at least one item to place items with plando.", block['force'])
continue
if isinstance(items, dict):
item_list: typing.List[str] = []
for key, value in items.items():
if value is True:
value = world.itempool.count(world.worlds[player].create_item(key))
item_list += [key] * value
items = item_list
if isinstance(items, str):
items = [items]
block['items'] = items
locations: block_value = []
if 'location' in block:
locations = block['location'] # just allow 'location' to keep old yamls compatible
elif 'locations' in block:
locations = block['locations']
if isinstance(locations, str):
locations = [locations]
if isinstance(locations, dict):
location_list = []
for key, value in locations.items():
location_list += [key] * value
locations = location_list
block['locations'] = locations
if not block['count']:
block['count'] = (min(len(block['items']), len(block['locations'])) if
len(block['locations']) > 0 else len(block['items']))
if isinstance(block['count'], int):
block['count'] = {'min': block['count'], 'max': block['count']}
if 'min' not in block['count']:
block['count']['min'] = 0
if 'max' not in block['count']:
block['count']['max'] = (min(len(block['items']), len(block['locations'])) if
len(block['locations']) > 0 else len(block['items']))
if block['count']['max'] > len(block['items']):
count = block['count']
failed(f"Plando count {count} greater than items specified", block['force'])
block['count'] = len(block['items'])
if block['count']['max'] > len(block['locations']) > 0:
count = block['count']
failed(f"Plando count {count} greater than locations specified", block['force'])
block['count'] = len(block['locations'])
block['count']['target'] = world.random.randint(block['count']['min'], block['count']['max'])
if block['count']['target'] > 0:
plando_blocks.append(block)
# shuffle, but then sort blocks by number of locations minus number of items,
# so less-flexible blocks get priority
world.random.shuffle(plando_blocks)
plando_blocks.sort(key=lambda block: (len(block['locations']) - block['count']['target']
if len(block['locations']) > 0
else len(world.get_unfilled_locations(player)) - block['count']['target']))
for placement in plando_blocks:
player = placement['player']
try:
target_world = placement['world']
locations = placement['locations']
items = placement['items']
maxcount = placement['count']['target']
from_pool = placement['from_pool']
if target_world is False or world.players == 1: # target own world
worlds: typing.Set[int] = {player}
elif target_world is True: # target any worlds besides own
worlds = set(world.player_ids) - {player}
elif target_world is None: # target all worlds
worlds = set(world.player_ids)
elif type(target_world) == list: # list of target worlds
worlds = set()
for listed_world in target_world:
if listed_world not in world_name_lookup:
failed(f"Cannot place item to {target_world}'s world as that world does not exist.",
placement['force'])
continue
worlds.add(world_name_lookup[listed_world])
elif type(target_world) == int: # target world by slot number
if target_world not in range(1, world.players + 1):
failed(
f"Cannot place item in world {target_world} as it is not in range of (1, {world.players})",
placement['force'])
continue
worlds = {target_world}
else: # target world by slot name
if target_world not in world_name_lookup:
failed(f"Cannot place item to {target_world}'s world as that world does not exist.",
placement['force'])
continue
worlds = {world_name_lookup[target_world]}
candidates = list(location for location in world.get_unfilled_locations_for_players(locations,
worlds))
world.random.shuffle(candidates)
world.random.shuffle(items)
count = 0
err: typing.List[str] = []
successful_pairs: typing.List[typing.Tuple[Item, Location]] = []
for item_name in items:
item = world.worlds[player].create_item(item_name)
for location in reversed(candidates):
if location in key_drop_data:
warn(
f"Can't place '{item_name}' at '{placement.location}', as key drop shuffle locations are not supported yet.")
continue
if not location.item:
if location.item_rule(item):
if location.can_fill(world.state, item, False):
successful_pairs.append((item, location))
candidates.remove(location)
count = count + 1
break
else:
err.append(f"Can't place item at {location} due to fill condition not met.")
else:
err.append(f"{item_name} not allowed at {location}.")
else:
err.append(f"Cannot place {item_name} into already filled location {location}.")
if count == maxcount:
break
if count < placement['count']['min']:
m = placement['count']['min']
failed(
f"Plando block failed to place {m - count} of {m} item(s) for {world.player_name[player]}, error(s): {' '.join(err)}",
placement['force'])
for (item, location) in successful_pairs:
world.push_item(location, item, collect=False)
location.event = True # flag location to be checked during fill
location.locked = True
logging.debug(f"Plando placed {item} at {location}")
if from_pool:
try:
world.itempool.remove(item)
except ValueError:
warn(
f"Could not remove {item} from pool for {world.player_name[player]} as it's already missing from it.",
placement['force'])
except Exception as e:
raise Exception(
f"Error running plando for player {player} ({world.player_name[player]})") from e