Archipelago/BaseClasses.py

1438 lines
62 KiB
Python

from __future__ import annotations
import copy
import itertools
import functools
import logging
import random
import secrets
import typing # this can go away when Python 3.8 support is dropped
from argparse import Namespace
from collections import Counter, deque
from collections.abc import Collection, MutableSequence
from enum import IntEnum, IntFlag
from typing import Any, Callable, Dict, Iterable, Iterator, List, NamedTuple, Optional, Set, Tuple, TypedDict, Union, \
Type, ClassVar
import NetUtils
import Options
import Utils
class Group(TypedDict, total=False):
name: str
game: str
world: auto_world
players: Set[int]
item_pool: Set[str]
replacement_items: Dict[int, Optional[str]]
local_items: Set[str]
non_local_items: Set[str]
link_replacement: bool
class ThreadBarrierProxy:
"""Passes through getattr while passthrough is True"""
def __init__(self, obj: object) -> None:
self.passthrough = True
self.obj = obj
def __getattr__(self, name: str) -> Any:
if self.passthrough:
return getattr(self.obj, name)
else:
raise RuntimeError("You are in a threaded context and global random state was removed for your safety. "
"Please use multiworld.per_slot_randoms[player] or randomize ahead of output.")
class MultiWorld():
debug_types = False
player_name: Dict[int, str]
difficulty_requirements: dict
required_medallions: dict
dark_room_logic: Dict[int, str]
restrict_dungeon_item_on_boss: Dict[int, bool]
plando_texts: List[Dict[str, str]]
plando_items: List[List[Dict[str, Any]]]
plando_connections: List
worlds: Dict[int, auto_world]
groups: Dict[int, Group]
regions: RegionManager
itempool: List[Item]
is_race: bool = False
precollected_items: Dict[int, List[Item]]
state: CollectionState
plando_options: PlandoOptions
accessibility: Dict[int, Options.Accessibility]
early_items: Dict[int, Dict[str, int]]
local_early_items: Dict[int, Dict[str, int]]
local_items: Dict[int, Options.LocalItems]
non_local_items: Dict[int, Options.NonLocalItems]
progression_balancing: Dict[int, Options.ProgressionBalancing]
completion_condition: Dict[int, Callable[[CollectionState], bool]]
indirect_connections: Dict[Region, Set[Entrance]]
exclude_locations: Dict[int, Options.ExcludeLocations]
priority_locations: Dict[int, Options.PriorityLocations]
start_inventory: Dict[int, Options.StartInventory]
start_hints: Dict[int, Options.StartHints]
start_location_hints: Dict[int, Options.StartLocationHints]
item_links: Dict[int, Options.ItemLinks]
game: Dict[int, str]
random: random.Random
per_slot_randoms: Dict[int, random.Random]
"""Deprecated. Please use `self.random` instead."""
class AttributeProxy():
def __init__(self, rule):
self.rule = rule
def __getitem__(self, player) -> bool:
return self.rule(player)
class RegionManager:
region_cache: Dict[int, Dict[str, Region]]
entrance_cache: Dict[int, Dict[str, Entrance]]
location_cache: Dict[int, Dict[str, Location]]
def __init__(self, players: int):
self.region_cache = {player: {} for player in range(1, players+1)}
self.entrance_cache = {player: {} for player in range(1, players+1)}
self.location_cache = {player: {} for player in range(1, players+1)}
def __iadd__(self, other: Iterable[Region]):
self.extend(other)
return self
def append(self, region: Region):
self.region_cache[region.player][region.name] = region
def extend(self, regions: Iterable[Region]):
for region in regions:
self.region_cache[region.player][region.name] = region
def __iter__(self) -> Iterator[Region]:
for regions in self.region_cache.values():
yield from regions.values()
def __len__(self):
return sum(len(regions) for regions in self.region_cache.values())
def __init__(self, players: int):
# world-local random state is saved for multiple generations running concurrently
self.random = ThreadBarrierProxy(random.Random())
self.players = players
self.player_types = {player: NetUtils.SlotType.player for player in self.player_ids}
self.glitch_triforce = False
self.algorithm = 'balanced'
self.groups = {}
self.regions = self.RegionManager(players)
self.shops = []
self.itempool = []
self.seed = None
self.seed_name: str = "Unavailable"
self.precollected_items = {player: [] for player in self.player_ids}
self.required_locations = []
self.light_world_light_cone = False
self.dark_world_light_cone = False
self.rupoor_cost = 10
self.aga_randomness = True
self.save_and_quit_from_boss = True
self.custom = False
self.customitemarray = []
self.shuffle_ganon = True
self.spoiler = Spoiler(self)
self.early_items = {player: {} for player in self.player_ids}
self.local_early_items = {player: {} for player in self.player_ids}
self.indirect_connections = {}
self.start_inventory_from_pool: Dict[int, Options.StartInventoryPool] = {}
self.fix_trock_doors = self.AttributeProxy(
lambda player: self.shuffle[player] != 'vanilla' or self.mode[player] == 'inverted')
self.fix_skullwoods_exit = self.AttributeProxy(
lambda player: self.shuffle[player] not in ['vanilla', 'simple', 'restricted', 'dungeonssimple'])
self.fix_palaceofdarkness_exit = self.AttributeProxy(
lambda player: self.shuffle[player] not in ['vanilla', 'simple', 'restricted', 'dungeonssimple'])
self.fix_trock_exit = self.AttributeProxy(
lambda player: self.shuffle[player] not in ['vanilla', 'simple', 'restricted', 'dungeonssimple'])
for player in range(1, players + 1):
def set_player_attr(attr, val):
self.__dict__.setdefault(attr, {})[player] = val
set_player_attr('shuffle', "vanilla")
set_player_attr('logic', "noglitches")
set_player_attr('mode', 'open')
set_player_attr('difficulty', 'normal')
set_player_attr('item_functionality', 'normal')
set_player_attr('timer', False)
set_player_attr('goal', 'ganon')
set_player_attr('required_medallions', ['Ether', 'Quake'])
set_player_attr('swamp_patch_required', False)
set_player_attr('powder_patch_required', False)
set_player_attr('ganon_at_pyramid', True)
set_player_attr('ganonstower_vanilla', True)
set_player_attr('can_access_trock_eyebridge', None)
set_player_attr('can_access_trock_front', None)
set_player_attr('can_access_trock_big_chest', None)
set_player_attr('can_access_trock_middle', None)
set_player_attr('fix_fake_world', True)
set_player_attr('difficulty_requirements', None)
set_player_attr('boss_shuffle', 'none')
set_player_attr('enemy_health', 'default')
set_player_attr('enemy_damage', 'default')
set_player_attr('beemizer_total_chance', 0)
set_player_attr('beemizer_trap_chance', 0)
set_player_attr('escape_assist', [])
set_player_attr('treasure_hunt_icon', 'Triforce Piece')
set_player_attr('treasure_hunt_count', 0)
set_player_attr('clock_mode', False)
set_player_attr('countdown_start_time', 10)
set_player_attr('red_clock_time', -2)
set_player_attr('blue_clock_time', 2)
set_player_attr('green_clock_time', 4)
set_player_attr('can_take_damage', True)
set_player_attr('triforce_pieces_available', 30)
set_player_attr('triforce_pieces_required', 20)
set_player_attr('shop_shuffle', 'off')
set_player_attr('shuffle_prizes', "g")
set_player_attr('sprite_pool', [])
set_player_attr('dark_room_logic', "lamp")
set_player_attr('plando_items', [])
set_player_attr('plando_texts', {})
set_player_attr('plando_connections', [])
set_player_attr('game', "A Link to the Past")
set_player_attr('completion_condition', lambda state: True)
self.worlds = {}
self.per_slot_randoms = {}
self.plando_options = PlandoOptions.none
def get_all_ids(self) -> Tuple[int, ...]:
return self.player_ids + tuple(self.groups)
def add_group(self, name: str, game: str, players: Set[int] = frozenset()) -> Tuple[int, Group]:
"""Create a group with name and return the assigned player ID and group.
If a group of this name already exists, the set of players is extended instead of creating a new one."""
for group_id, group in self.groups.items():
if group["name"] == name:
group["players"] |= players
return group_id, group
new_id: int = self.players + len(self.groups) + 1
self.game[new_id] = game
self.player_types[new_id] = NetUtils.SlotType.group
world_type = AutoWorld.AutoWorldRegister.world_types[game]
self.worlds[new_id] = world_type.create_group(self, new_id, players)
self.worlds[new_id].collect_item = classmethod(AutoWorld.World.collect_item).__get__(self.worlds[new_id])
self.player_name[new_id] = name
new_group = self.groups[new_id] = Group(name=name, game=game, players=players,
world=self.worlds[new_id])
return new_id, new_group
def get_player_groups(self, player) -> Set[int]:
return {group_id for group_id, group in self.groups.items() if player in group["players"]}
def set_seed(self, seed: Optional[int] = None, secure: bool = False, name: Optional[str] = None):
self.seed = get_seed(seed)
if secure:
self.secure()
else:
self.random.seed(self.seed)
self.seed_name = name if name else str(self.seed)
self.per_slot_randoms = {player: random.Random(self.random.getrandbits(64)) for player in
range(1, self.players + 1)}
def set_options(self, args: Namespace) -> None:
for player in self.player_ids:
world_type = AutoWorld.AutoWorldRegister.world_types[self.game[player]]
self.worlds[player] = world_type(self, player)
self.worlds[player].random = self.per_slot_randoms[player]
for option_key in world_type.options_dataclass.type_hints:
option_values = getattr(args, option_key, {})
setattr(self, option_key, option_values)
# TODO - remove this loop once all worlds use options dataclasses
options_dataclass: typing.Type[Options.PerGameCommonOptions] = self.worlds[player].options_dataclass
self.worlds[player].options = options_dataclass(**{option_key: getattr(args, option_key)[player]
for option_key in options_dataclass.type_hints})
def set_item_links(self):
item_links = {}
replacement_prio = [False, True, None]
for player in self.player_ids:
for item_link in self.worlds[player].options.item_links.value:
if item_link["name"] in item_links:
if item_links[item_link["name"]]["game"] != self.game[player]:
raise Exception(f"Cannot ItemLink across games. Link: {item_link['name']}")
current_link = item_links[item_link["name"]]
current_link["players"][player] = item_link["replacement_item"]
current_link["item_pool"] &= set(item_link["item_pool"])
current_link["exclude"] |= set(item_link.get("exclude", []))
current_link["local_items"] &= set(item_link.get("local_items", []))
current_link["non_local_items"] &= set(item_link.get("non_local_items", []))
current_link["link_replacement"] = min(current_link["link_replacement"],
replacement_prio.index(item_link["link_replacement"]))
else:
if item_link["name"] in self.player_name.values():
raise Exception(f"Cannot name a ItemLink group the same as a player ({item_link['name']}) "
f"({self.get_player_name(player)}).")
item_links[item_link["name"]] = {
"players": {player: item_link["replacement_item"]},
"item_pool": set(item_link["item_pool"]),
"exclude": set(item_link.get("exclude", [])),
"game": self.game[player],
"local_items": set(item_link.get("local_items", [])),
"non_local_items": set(item_link.get("non_local_items", [])),
"link_replacement": replacement_prio.index(item_link["link_replacement"]),
}
for name, item_link in item_links.items():
current_item_name_groups = AutoWorld.AutoWorldRegister.world_types[item_link["game"]].item_name_groups
pool = set()
local_items = set()
non_local_items = set()
for item in item_link["item_pool"]:
pool |= current_item_name_groups.get(item, {item})
for item in item_link["exclude"]:
pool -= current_item_name_groups.get(item, {item})
for item in item_link["local_items"]:
local_items |= current_item_name_groups.get(item, {item})
for item in item_link["non_local_items"]:
non_local_items |= current_item_name_groups.get(item, {item})
local_items &= pool
non_local_items &= pool
item_link["item_pool"] = pool
item_link["local_items"] = local_items
item_link["non_local_items"] = non_local_items
for group_name, item_link in item_links.items():
game = item_link["game"]
group_id, group = self.add_group(group_name, game, set(item_link["players"]))
group["item_pool"] = item_link["item_pool"]
group["replacement_items"] = item_link["players"]
group["local_items"] = item_link["local_items"]
group["non_local_items"] = item_link["non_local_items"]
group["link_replacement"] = replacement_prio[item_link["link_replacement"]]
def secure(self):
self.random = ThreadBarrierProxy(secrets.SystemRandom())
self.is_race = True
@functools.cached_property
def player_ids(self) -> Tuple[int, ...]:
return tuple(range(1, self.players + 1))
@Utils.cache_self1
def get_game_players(self, game_name: str) -> Tuple[int, ...]:
return tuple(player for player in self.player_ids if self.game[player] == game_name)
@Utils.cache_self1
def get_game_groups(self, game_name: str) -> Tuple[int, ...]:
return tuple(group_id for group_id in self.groups if self.game[group_id] == game_name)
@Utils.cache_self1
def get_game_worlds(self, game_name: str):
return tuple(world for player, world in self.worlds.items() if
player not in self.groups and self.game[player] == game_name)
def get_name_string_for_object(self, obj) -> str:
return obj.name if self.players == 1 else f'{obj.name} ({self.get_player_name(obj.player)})'
def get_player_name(self, player: int) -> str:
return self.player_name[player]
def get_file_safe_player_name(self, player: int) -> str:
return Utils.get_file_safe_name(self.get_player_name(player))
def get_out_file_name_base(self, player: int) -> str:
""" the base name (without file extension) for each player's output file for a seed """
return f"AP_{self.seed_name}_P{player}_{self.get_file_safe_player_name(player).replace(' ', '_')}"
@functools.cached_property
def world_name_lookup(self):
return {self.player_name[player_id]: player_id for player_id in self.player_ids}
def get_regions(self, player: Optional[int] = None) -> Collection[Region]:
return self.regions if player is None else self.regions.region_cache[player].values()
def get_region(self, region_name: str, player: int) -> Region:
return self.regions.region_cache[player][region_name]
def get_entrance(self, entrance_name: str, player: int) -> Entrance:
return self.regions.entrance_cache[player][entrance_name]
def get_location(self, location_name: str, player: int) -> Location:
return self.regions.location_cache[player][location_name]
def get_all_state(self, use_cache: bool) -> CollectionState:
cached = getattr(self, "_all_state", None)
if use_cache and cached:
return cached.copy()
ret = CollectionState(self)
for item in self.itempool:
self.worlds[item.player].collect(ret, item)
for player in self.player_ids:
subworld = self.worlds[player]
for item in subworld.get_pre_fill_items():
subworld.collect(ret, item)
ret.sweep_for_events()
if use_cache:
self._all_state = ret
return ret
def get_items(self) -> List[Item]:
return [loc.item for loc in self.get_filled_locations()] + self.itempool
def find_item_locations(self, item, player: int, resolve_group_locations: bool = False) -> List[Location]:
if resolve_group_locations:
player_groups = self.get_player_groups(player)
return [location for location in self.get_locations() if
location.item and location.item.name == item and location.player not in player_groups and
(location.item.player == player or location.item.player in player_groups)]
return [location for location in self.get_locations() if
location.item and location.item.name == item and location.item.player == player]
def find_item(self, item, player: int) -> Location:
return next(location for location in self.get_locations() if
location.item and location.item.name == item and location.item.player == player)
def find_items_in_locations(self, items: Set[str], player: int, resolve_group_locations: bool = False) -> List[Location]:
if resolve_group_locations:
player_groups = self.get_player_groups(player)
return [location for location in self.get_locations() if
location.item and location.item.name in items and location.player not in player_groups and
(location.item.player == player or location.item.player in player_groups)]
return [location for location in self.get_locations() if
location.item and location.item.name in items and location.item.player == player]
def create_item(self, item_name: str, player: int) -> Item:
return self.worlds[player].create_item(item_name)
def push_precollected(self, item: Item):
self.precollected_items[item.player].append(item)
self.state.collect(item, True)
def push_item(self, location: Location, item: Item, collect: bool = True):
location.item = item
item.location = location
if collect:
self.state.collect(item, location.event, location)
logging.debug('Placed %s at %s', item, location)
def get_entrances(self, player: Optional[int] = None) -> Iterable[Entrance]:
if player is not None:
return self.regions.entrance_cache[player].values()
return Utils.RepeatableChain(tuple(self.regions.entrance_cache[player].values()
for player in self.regions.entrance_cache))
def register_indirect_condition(self, region: Region, entrance: Entrance):
"""Report that access to this Region can result in unlocking this Entrance,
state.can_reach(Region) in the Entrance's traversal condition, as opposed to pure transition logic."""
self.indirect_connections.setdefault(region, set()).add(entrance)
def get_locations(self, player: Optional[int] = None) -> Iterable[Location]:
if player is not None:
return self.regions.location_cache[player].values()
return Utils.RepeatableChain(tuple(self.regions.location_cache[player].values()
for player in self.regions.location_cache))
def get_unfilled_locations(self, player: Optional[int] = None) -> List[Location]:
return [location for location in self.get_locations(player) if location.item is None]
def get_filled_locations(self, player: Optional[int] = None) -> List[Location]:
return [location for location in self.get_locations(player) if location.item is not None]
def get_reachable_locations(self, state: Optional[CollectionState] = None, player: Optional[int] = None) -> List[Location]:
state: CollectionState = state if state else self.state
return [location for location in self.get_locations(player) if location.can_reach(state)]
def get_placeable_locations(self, state=None, player=None) -> List[Location]:
state: CollectionState = state if state else self.state
return [location for location in self.get_locations(player) if location.item is None and location.can_reach(state)]
def get_unfilled_locations_for_players(self, location_names: List[str], players: Iterable[int]):
for player in players:
if not location_names:
valid_locations = [location.name for location in self.get_unfilled_locations(player)]
else:
valid_locations = location_names
relevant_cache = self.regions.location_cache[player]
for location_name in valid_locations:
location = relevant_cache.get(location_name, None)
if location and location.item is None:
yield location
def unlocks_new_location(self, item: Item) -> bool:
temp_state = self.state.copy()
temp_state.collect(item, True)
for location in self.get_unfilled_locations(item.player):
if temp_state.can_reach(location) and not self.state.can_reach(location):
return True
return False
def has_beaten_game(self, state: CollectionState, player: Optional[int] = None) -> bool:
if player:
return self.completion_condition[player](state)
else:
return all((self.has_beaten_game(state, p) for p in range(1, self.players + 1)))
def can_beat_game(self, starting_state: Optional[CollectionState] = None):
if starting_state:
if self.has_beaten_game(starting_state):
return True
state = starting_state.copy()
else:
if self.has_beaten_game(self.state):
return True
state = CollectionState(self)
prog_locations = {location for location in self.get_locations() if location.item
and location.item.advancement and location not in state.locations_checked}
while prog_locations:
sphere = set()
# build up spheres of collection radius.
# Everything in each sphere is independent from each other in dependencies and only depends on lower spheres
for location in prog_locations:
if location.can_reach(state):
sphere.add(location)
if not sphere:
# ran out of places and did not finish yet, quit
return False
for location in sphere:
state.collect(location.item, True, location)
prog_locations -= sphere
if self.has_beaten_game(state):
return True
return False
def get_spheres(self):
state = CollectionState(self)
locations = set(self.get_filled_locations())
while locations:
sphere = set()
for location in locations:
if location.can_reach(state):
sphere.add(location)
yield sphere
if not sphere:
if locations:
yield locations # unreachable locations
break
for location in sphere:
state.collect(location.item, True, location)
locations -= sphere
def fulfills_accessibility(self, state: Optional[CollectionState] = None):
"""Check if accessibility rules are fulfilled with current or supplied state."""
if not state:
state = CollectionState(self)
players: Dict[str, Set[int]] = {
"minimal": set(),
"items": set(),
"locations": set()
}
for player, access in self.accessibility.items():
players[access.current_key].add(player)
beatable_fulfilled = False
def location_condition(location: Location):
"""Determine if this location has to be accessible, location is already filtered by location_relevant"""
if location.player in players["minimal"]:
return False
return True
def location_relevant(location: Location):
"""Determine if this location is relevant to sweep."""
if location.progress_type != LocationProgressType.EXCLUDED \
and (location.player in players["locations"] or location.event
or (location.item and location.item.advancement)):
return True
return False
def all_done() -> bool:
"""Check if all access rules are fulfilled"""
if not beatable_fulfilled:
return False
if any(location_condition(location) for location in locations):
return False # still locations required to be collected
return True
locations = [location for location in self.get_locations() if location_relevant(location)]
while locations:
sphere: List[Location] = []
for n in range(len(locations) - 1, -1, -1):
if locations[n].can_reach(state):
sphere.append(locations.pop(n))
if not sphere:
# ran out of places and did not finish yet, quit
logging.warning(f"Could not access required locations for accessibility check."
f" Missing: {locations}")
return False
for location in sphere:
if location.item:
state.collect(location.item, True, location)
if self.has_beaten_game(state):
beatable_fulfilled = True
if all_done():
return True
return False
PathValue = Tuple[str, Optional["PathValue"]]
class CollectionState():
prog_items: Dict[int, Counter[str]]
multiworld: MultiWorld
reachable_regions: Dict[int, Set[Region]]
blocked_connections: Dict[int, Set[Entrance]]
events: Set[Location]
path: Dict[Union[Region, Entrance], PathValue]
locations_checked: Set[Location]
stale: Dict[int, bool]
additional_init_functions: List[Callable[[CollectionState, MultiWorld], None]] = []
additional_copy_functions: List[Callable[[CollectionState, CollectionState], CollectionState]] = []
def __init__(self, parent: MultiWorld):
self.prog_items = {player: Counter() for player in parent.player_ids}
self.multiworld = parent
self.reachable_regions = {player: set() for player in parent.get_all_ids()}
self.blocked_connections = {player: set() for player in parent.get_all_ids()}
self.events = set()
self.path = {}
self.locations_checked = set()
self.stale = {player: True for player in parent.get_all_ids()}
for function in self.additional_init_functions:
function(self, parent)
for items in parent.precollected_items.values():
for item in items:
self.collect(item, True)
def update_reachable_regions(self, player: int):
self.stale[player] = False
rrp = self.reachable_regions[player]
bc = self.blocked_connections[player]
queue = deque(self.blocked_connections[player])
start = self.multiworld.get_region('Menu', player)
# init on first call - this can't be done on construction since the regions don't exist yet
if start not in rrp:
rrp.add(start)
bc.update(start.exits)
queue.extend(start.exits)
# run BFS on all connections, and keep track of those blocked by missing items
while queue:
connection = queue.popleft()
new_region = connection.connected_region
if new_region in rrp:
bc.remove(connection)
elif connection.can_reach(self):
assert new_region, f"tried to search through an Entrance \"{connection}\" with no Region"
rrp.add(new_region)
bc.remove(connection)
bc.update(new_region.exits)
queue.extend(new_region.exits)
self.path[new_region] = (new_region.name, self.path.get(connection, None))
# Retry connections if the new region can unblock them
for new_entrance in self.multiworld.indirect_connections.get(new_region, set()):
if new_entrance in bc and new_entrance not in queue:
queue.append(new_entrance)
def copy(self) -> CollectionState:
ret = CollectionState(self.multiworld)
ret.prog_items = copy.deepcopy(self.prog_items)
ret.reachable_regions = {player: copy.copy(self.reachable_regions[player]) for player in
self.reachable_regions}
ret.blocked_connections = {player: copy.copy(self.blocked_connections[player]) for player in
self.blocked_connections}
ret.events = copy.copy(self.events)
ret.path = copy.copy(self.path)
ret.locations_checked = copy.copy(self.locations_checked)
for function in self.additional_copy_functions:
ret = function(self, ret)
return ret
def can_reach(self,
spot: Union[Location, Entrance, Region, str],
resolution_hint: Optional[str] = None,
player: Optional[int] = None) -> bool:
if isinstance(spot, str):
assert isinstance(player, int), "can_reach: player is required if spot is str"
# try to resolve a name
if resolution_hint == 'Location':
spot = self.multiworld.get_location(spot, player)
elif resolution_hint == 'Entrance':
spot = self.multiworld.get_entrance(spot, player)
else:
# default to Region
spot = self.multiworld.get_region(spot, player)
return spot.can_reach(self)
def sweep_for_events(self, key_only: bool = False, locations: Optional[Iterable[Location]] = None) -> None:
if locations is None:
locations = self.multiworld.get_filled_locations()
reachable_events = True
# since the loop has a good chance to run more than once, only filter the events once
locations = {location for location in locations if location.event and location not in self.events and
not key_only or getattr(location.item, "locked_dungeon_item", False)}
while reachable_events:
reachable_events = {location for location in locations if location.can_reach(self)}
locations -= reachable_events
for event in reachable_events:
self.events.add(event)
assert isinstance(event.item, Item), "tried to collect Event with no Item"
self.collect(event.item, True, event)
def has(self, item: str, player: int, count: int = 1) -> bool:
return self.prog_items[player][item] >= count
def has_all(self, items: Iterable[str], player: int) -> bool:
"""Returns True if each item name of items is in state at least once."""
return all(self.prog_items[player][item] for item in items)
def has_any(self, items: Iterable[str], player: int) -> bool:
"""Returns True if at least one item name of items is in state at least once."""
return any(self.prog_items[player][item] for item in items)
def count(self, item: str, player: int) -> int:
return self.prog_items[player][item]
def has_group(self, item_name_group: str, player: int, count: int = 1) -> bool:
found: int = 0
player_prog_items = self.prog_items[player]
for item_name in self.multiworld.worlds[player].item_name_groups[item_name_group]:
found += player_prog_items[item_name]
if found >= count:
return True
return False
def count_group(self, item_name_group: str, player: int) -> int:
found: int = 0
player_prog_items = self.prog_items[player]
for item_name in self.multiworld.worlds[player].item_name_groups[item_name_group]:
found += player_prog_items[item_name]
return found
def item_count(self, item: str, player: int) -> int:
return self.prog_items[player][item]
def collect(self, item: Item, event: bool = False, location: Optional[Location] = None) -> bool:
if location:
self.locations_checked.add(location)
changed = self.multiworld.worlds[item.player].collect(self, item)
if not changed and event:
self.prog_items[item.player][item.name] += 1
changed = True
self.stale[item.player] = True
if changed and not event:
self.sweep_for_events()
return changed
def remove(self, item: Item):
changed = self.multiworld.worlds[item.player].remove(self, item)
if changed:
# invalidate caches, nothing can be trusted anymore now
self.reachable_regions[item.player] = set()
self.blocked_connections[item.player] = set()
self.stale[item.player] = True
class Entrance:
access_rule: Callable[[CollectionState], bool] = staticmethod(lambda state: True)
hide_path: bool = False
player: int
name: str
parent_region: Optional[Region]
connected_region: Optional[Region] = None
# LttP specific, TODO: should make a LttPEntrance
addresses = None
target = None
def __init__(self, player: int, name: str = '', parent: Region = None):
self.name = name
self.parent_region = parent
self.player = player
def can_reach(self, state: CollectionState) -> bool:
if self.parent_region.can_reach(state) and self.access_rule(state):
if not self.hide_path and not self in state.path:
state.path[self] = (self.name, state.path.get(self.parent_region, (self.parent_region.name, None)))
return True
return False
def connect(self, region: Region, addresses: Any = None, target: Any = None) -> None:
self.connected_region = region
self.target = target
self.addresses = addresses
region.entrances.append(self)
def __repr__(self):
return self.__str__()
def __str__(self):
world = self.parent_region.multiworld if self.parent_region else None
return world.get_name_string_for_object(self) if world else f'{self.name} (Player {self.player})'
class Region:
name: str
_hint_text: str
player: int
multiworld: Optional[MultiWorld]
entrances: List[Entrance]
exits: List[Entrance]
locations: List[Location]
entrance_type: ClassVar[Type[Entrance]] = Entrance
class Register(MutableSequence):
region_manager: MultiWorld.RegionManager
def __init__(self, region_manager: MultiWorld.RegionManager):
self._list = []
self.region_manager = region_manager
def __getitem__(self, index: int) -> Location:
return self._list.__getitem__(index)
def __setitem__(self, index: int, value: Location) -> None:
raise NotImplementedError()
def __len__(self) -> int:
return self._list.__len__()
# This seems to not be needed, but that's a bit suspicious.
# def __del__(self):
# self.clear()
def copy(self):
return self._list.copy()
class LocationRegister(Register):
def __delitem__(self, index: int) -> None:
location: Location = self._list.__getitem__(index)
self._list.__delitem__(index)
del(self.region_manager.location_cache[location.player][location.name])
def insert(self, index: int, value: Location) -> None:
self._list.insert(index, value)
self.region_manager.location_cache[value.player][value.name] = value
class EntranceRegister(Register):
def __delitem__(self, index: int) -> None:
entrance: Entrance = self._list.__getitem__(index)
self._list.__delitem__(index)
del(self.region_manager.entrance_cache[entrance.player][entrance.name])
def insert(self, index: int, value: Entrance) -> None:
self._list.insert(index, value)
self.region_manager.entrance_cache[value.player][value.name] = value
_locations: LocationRegister[Location]
_exits: EntranceRegister[Entrance]
def __init__(self, name: str, player: int, multiworld: MultiWorld, hint: Optional[str] = None):
self.name = name
self.entrances = []
self._exits = self.EntranceRegister(multiworld.regions)
self._locations = self.LocationRegister(multiworld.regions)
self.multiworld = multiworld
self._hint_text = hint
self.player = player
def get_locations(self):
return self._locations
def set_locations(self, new):
if new is self._locations:
return
self._locations.clear()
self._locations.extend(new)
locations = property(get_locations, set_locations)
def get_exits(self):
return self._exits
def set_exits(self, new):
if new is self._exits:
return
self._exits.clear()
self._exits.extend(new)
exits = property(get_exits, set_exits)
def can_reach(self, state: CollectionState) -> bool:
if state.stale[self.player]:
state.update_reachable_regions(self.player)
return self in state.reachable_regions[self.player]
@property
def hint_text(self) -> str:
return self._hint_text if self._hint_text else self.name
def get_connecting_entrance(self, is_main_entrance: Callable[[Entrance], bool]) -> Entrance:
for entrance in self.entrances:
if is_main_entrance(entrance):
return entrance
for entrance in self.entrances: # BFS might be better here, trying DFS for now.
return entrance.parent_region.get_connecting_entrance(is_main_entrance)
def add_locations(self, locations: Dict[str, Optional[int]],
location_type: Optional[Type[Location]] = None) -> None:
"""
Adds locations to the Region object, where location_type is your Location class and locations is a dict of
location names to address.
:param locations: dictionary of locations to be created and added to this Region `{name: ID}`
:param location_type: Location class to be used to create the locations with"""
if location_type is None:
location_type = Location
for location, address in locations.items():
self.locations.append(location_type(self.player, location, address, self))
def connect(self, connecting_region: Region, name: Optional[str] = None,
rule: Optional[Callable[[CollectionState], bool]] = None) -> entrance_type:
"""
Connects this Region to another Region, placing the provided rule on the connection.
:param connecting_region: Region object to connect to path is `self -> exiting_region`
:param name: name of the connection being created
:param rule: callable to determine access of this connection to go from self to the exiting_region"""
exit_ = self.create_exit(name if name else f"{self.name} -> {connecting_region.name}")
if rule:
exit_.access_rule = rule
exit_.connect(connecting_region)
return exit_
def create_exit(self, name: str) -> Entrance:
"""
Creates and returns an Entrance object as an exit of this region.
:param name: name of the Entrance being created
"""
exit_ = self.entrance_type(self.player, name, self)
self.exits.append(exit_)
return exit_
def add_exits(self, exits: Union[Iterable[str], Dict[str, Optional[str]]],
rules: Dict[str, Callable[[CollectionState], bool]] = None) -> None:
"""
Connects current region to regions in exit dictionary. Passed region names must exist first.
:param exits: exits from the region. format is {"connecting_region": "exit_name"}. if a non dict is provided,
created entrances will be named "self.name -> connecting_region"
:param rules: rules for the exits from this region. format is {"connecting_region", rule}
"""
if not isinstance(exits, Dict):
exits = dict.fromkeys(exits)
for connecting_region, name in exits.items():
self.connect(self.multiworld.get_region(connecting_region, self.player),
name,
rules[connecting_region] if rules and connecting_region in rules else None)
def __repr__(self):
return self.__str__()
def __str__(self):
return self.multiworld.get_name_string_for_object(self) if self.multiworld else f'{self.name} (Player {self.player})'
class LocationProgressType(IntEnum):
DEFAULT = 1
PRIORITY = 2
EXCLUDED = 3
class Location:
game: str = "Generic"
player: int
name: str
address: Optional[int]
parent_region: Optional[Region]
event: bool = False
locked: bool = False
show_in_spoiler: bool = True
progress_type: LocationProgressType = LocationProgressType.DEFAULT
always_allow = staticmethod(lambda item, state: False)
access_rule: Callable[[CollectionState], bool] = staticmethod(lambda state: True)
item_rule = staticmethod(lambda item: True)
item: Optional[Item] = None
def __init__(self, player: int, name: str = '', address: Optional[int] = None, parent: Optional[Region] = None):
self.player = player
self.name = name
self.address = address
self.parent_region = parent
def can_fill(self, state: CollectionState, item: Item, check_access=True) -> bool:
return ((self.always_allow(state, item) and item.name not in state.multiworld.non_local_items[item.player])
or ((self.progress_type != LocationProgressType.EXCLUDED or not (item.advancement or item.useful))
and self.item_rule(item)
and (not check_access or self.can_reach(state))))
def can_reach(self, state: CollectionState) -> bool:
# self.access_rule computes faster on average, so placing it first for faster abort
assert self.parent_region, "Can't reach location without region"
return self.access_rule(state) and self.parent_region.can_reach(state)
def place_locked_item(self, item: Item):
if self.item:
raise Exception(f"Location {self} already filled.")
self.item = item
item.location = self
self.event = item.advancement
self.locked = True
def __repr__(self):
return self.__str__()
def __str__(self):
world = self.parent_region.multiworld if self.parent_region and self.parent_region.multiworld else None
return world.get_name_string_for_object(self) if world else f'{self.name} (Player {self.player})'
def __hash__(self):
return hash((self.name, self.player))
def __lt__(self, other: Location):
return (self.player, self.name) < (other.player, other.name)
@property
def native_item(self) -> bool:
"""Returns True if the item in this location matches game."""
return self.item and self.item.game == self.game
@property
def hint_text(self) -> str:
hint_text = getattr(self, "_hint_text", None)
if hint_text:
return hint_text
return "at " + self.name.replace("_", " ").replace("-", " ")
class ItemClassification(IntFlag):
filler = 0b0000 # aka trash, as in filler items like ammo, currency etc,
progression = 0b0001 # Item that is logically relevant
useful = 0b0010 # Item that is generally quite useful, but not required for anything logical
trap = 0b0100 # detrimental or entirely useless (nothing) item
skip_balancing = 0b1000 # should technically never occur on its own
# Item that is logically relevant, but progression balancing should not touch.
# Typically currency or other counted items.
progression_skip_balancing = 0b1001 # only progression gets balanced
def as_flag(self) -> int:
"""As Network API flag int."""
return int(self & 0b0111)
class Item:
game: str = "Generic"
__slots__ = ("name", "classification", "code", "player", "location")
name: str
classification: ItemClassification
code: Optional[int]
"""an item with code None is called an Event, and does not get written to multidata"""
player: int
location: Optional[Location]
def __init__(self, name: str, classification: ItemClassification, code: Optional[int], player: int):
self.name = name
self.classification = classification
self.player = player
self.code = code
self.location = None
@property
def hint_text(self) -> str:
return getattr(self, "_hint_text", self.name.replace("_", " ").replace("-", " "))
@property
def pedestal_hint_text(self) -> str:
return getattr(self, "_pedestal_hint_text", self.name.replace("_", " ").replace("-", " "))
@property
def advancement(self) -> bool:
return ItemClassification.progression in self.classification
@property
def skip_in_prog_balancing(self) -> bool:
return ItemClassification.progression_skip_balancing in self.classification
@property
def useful(self) -> bool:
return ItemClassification.useful in self.classification
@property
def trap(self) -> bool:
return ItemClassification.trap in self.classification
@property
def flags(self) -> int:
return self.classification.as_flag()
def __eq__(self, other: object) -> bool:
if not isinstance(other, Item):
return NotImplemented
return self.name == other.name and self.player == other.player
def __lt__(self, other: object) -> bool:
if not isinstance(other, Item):
return NotImplemented
if other.player != self.player:
return other.player < self.player
return self.name < other.name
def __hash__(self) -> int:
return hash((self.name, self.player))
def __repr__(self) -> str:
return self.__str__()
def __str__(self) -> str:
if self.location and self.location.parent_region and self.location.parent_region.multiworld:
return self.location.parent_region.multiworld.get_name_string_for_object(self)
return f"{self.name} (Player {self.player})"
class EntranceInfo(TypedDict, total=False):
player: int
entrance: str
exit: str
direction: str
class Spoiler:
multiworld: MultiWorld
hashes: Dict[int, str]
entrances: Dict[Tuple[str, str, int], EntranceInfo]
playthrough: Dict[str, Union[List[str], Dict[str, str]]] # sphere "0" is list, others are dict
unreachables: Set[Location]
paths: Dict[str, List[Union[Tuple[str, str], Tuple[str, None]]]] # last step takes no further exits
def __init__(self, multiworld: MultiWorld) -> None:
self.multiworld = multiworld
self.hashes = {}
self.entrances = {}
self.playthrough = {}
self.unreachables = set()
self.paths = {}
def set_entrance(self, entrance: str, exit_: str, direction: str, player: int) -> None:
if self.multiworld.players == 1:
self.entrances[(entrance, direction, player)] = \
{"entrance": entrance, "exit": exit_, "direction": direction}
else:
self.entrances[(entrance, direction, player)] = \
{"player": player, "entrance": entrance, "exit": exit_, "direction": direction}
def create_playthrough(self, create_paths: bool = True) -> None:
"""Destructive to the world while it is run, damage gets repaired afterwards."""
from itertools import chain
# get locations containing progress items
multiworld = self.multiworld
prog_locations = {location for location in multiworld.get_filled_locations() if location.item.advancement}
state_cache: List[Optional[CollectionState]] = [None]
collection_spheres: List[Set[Location]] = []
state = CollectionState(multiworld)
sphere_candidates = set(prog_locations)
logging.debug('Building up collection spheres.')
while sphere_candidates:
# build up spheres of collection radius.
# Everything in each sphere is independent from each other in dependencies and only depends on lower spheres
sphere = {location for location in sphere_candidates if state.can_reach(location)}
for location in sphere:
state.collect(location.item, True, location)
sphere_candidates -= sphere
collection_spheres.append(sphere)
state_cache.append(state.copy())
logging.debug('Calculated sphere %i, containing %i of %i progress items.', len(collection_spheres),
len(sphere),
len(prog_locations))
if not sphere:
logging.debug('The following items could not be reached: %s', ['%s (Player %d) at %s (Player %d)' % (
location.item.name, location.item.player, location.name, location.player) for location in
sphere_candidates])
if any([multiworld.accessibility[location.item.player] != 'minimal' for location in sphere_candidates]):
raise RuntimeError(f'Not all progression items reachable ({sphere_candidates}). '
f'Something went terribly wrong here.')
else:
self.unreachables = sphere_candidates
break
# in the second phase, we cull each sphere such that the game is still beatable,
# reducing each range of influence to the bare minimum required inside it
restore_later = {}
for num, sphere in reversed(tuple(enumerate(collection_spheres))):
to_delete = set()
for location in sphere:
# we remove the item at location and check if game is still beatable
logging.debug('Checking if %s (Player %d) is required to beat the game.', location.item.name,
location.item.player)
old_item = location.item
location.item = None
if multiworld.can_beat_game(state_cache[num]):
to_delete.add(location)
restore_later[location] = old_item
else:
# still required, got to keep it around
location.item = old_item
# cull entries in spheres for spoiler walkthrough at end
sphere -= to_delete
# second phase, sphere 0
removed_precollected = []
for item in (i for i in chain.from_iterable(multiworld.precollected_items.values()) if i.advancement):
logging.debug('Checking if %s (Player %d) is required to beat the game.', item.name, item.player)
multiworld.precollected_items[item.player].remove(item)
multiworld.state.remove(item)
if not multiworld.can_beat_game():
multiworld.push_precollected(item)
else:
removed_precollected.append(item)
# we are now down to just the required progress items in collection_spheres. Unfortunately
# the previous pruning stage could potentially have made certain items dependant on others
# in the same or later sphere (because the location had 2 ways to access but the item originally
# used to access it was deemed not required.) So we need to do one final sphere collection pass
# to build up the correct spheres
required_locations = {item for sphere in collection_spheres for item in sphere}
state = CollectionState(multiworld)
collection_spheres = []
while required_locations:
state.sweep_for_events(key_only=True)
sphere = set(filter(state.can_reach, required_locations))
for location in sphere:
state.collect(location.item, True, location)
required_locations -= sphere
collection_spheres.append(sphere)
logging.debug('Calculated final sphere %i, containing %i of %i progress items.', len(collection_spheres),
len(sphere), len(required_locations))
if not sphere:
raise RuntimeError(f'Not all required items reachable. Unreachable locations: {required_locations}')
# we can finally output our playthrough
self.playthrough = {"0": sorted([self.multiworld.get_name_string_for_object(item) for item in
chain.from_iterable(multiworld.precollected_items.values())
if item.advancement])}
for i, sphere in enumerate(collection_spheres):
self.playthrough[str(i + 1)] = {
str(location): str(location.item) for location in sorted(sphere)}
if create_paths:
self.create_paths(state, collection_spheres)
# repair the multiworld again
for location, item in restore_later.items():
location.item = item
for item in removed_precollected:
multiworld.push_precollected(item)
def create_paths(self, state: CollectionState, collection_spheres: List[Set[Location]]) -> None:
from itertools import zip_longest
multiworld = self.multiworld
def flist_to_iter(path_value: Optional[PathValue]) -> Iterator[str]:
while path_value:
region_or_entrance, path_value = path_value
yield region_or_entrance
def get_path(state: CollectionState, region: Region) -> List[Union[Tuple[str, str], Tuple[str, None]]]:
reversed_path_as_flist: PathValue = state.path.get(region, (str(region), None))
string_path_flat = reversed(list(map(str, flist_to_iter(reversed_path_as_flist))))
# Now we combine the flat string list into (region, exit) pairs
pathsiter = iter(string_path_flat)
pathpairs = zip_longest(pathsiter, pathsiter)
return list(pathpairs)
self.paths = {}
topology_worlds = (player for player in multiworld.player_ids if multiworld.worlds[player].topology_present)
for player in topology_worlds:
self.paths.update(
{str(location): get_path(state, location.parent_region)
for sphere in collection_spheres for location in sphere
if location.player == player})
if player in multiworld.get_game_players("A Link to the Past"):
# If Pyramid Fairy Entrance needs to be reached, also path to Big Bomb Shop
# Maybe move the big bomb over to the Event system instead?
if any(exit_path == 'Pyramid Fairy' for path in self.paths.values()
for (_, exit_path) in path):
if multiworld.mode[player] != 'inverted':
self.paths[str(multiworld.get_region('Big Bomb Shop', player))] = \
get_path(state, multiworld.get_region('Big Bomb Shop', player))
else:
self.paths[str(multiworld.get_region('Inverted Big Bomb Shop', player))] = \
get_path(state, multiworld.get_region('Inverted Big Bomb Shop', player))
def to_file(self, filename: str) -> None:
def write_option(option_key: str, option_obj: Options.AssembleOptions) -> None:
res = getattr(self.multiworld.worlds[player].options, option_key)
display_name = getattr(option_obj, "display_name", option_key)
outfile.write(f"{display_name + ':':33}{res.current_option_name}\n")
with open(filename, 'w', encoding="utf-8-sig") as outfile:
outfile.write(
'Archipelago Version %s - Seed: %s\n\n' % (
Utils.__version__, self.multiworld.seed))
outfile.write('Filling Algorithm: %s\n' % self.multiworld.algorithm)
outfile.write('Players: %d\n' % self.multiworld.players)
outfile.write(f'Plando Options: {self.multiworld.plando_options}\n')
AutoWorld.call_stage(self.multiworld, "write_spoiler_header", outfile)
for player in range(1, self.multiworld.players + 1):
if self.multiworld.players > 1:
outfile.write('\nPlayer %d: %s\n' % (player, self.multiworld.get_player_name(player)))
outfile.write('Game: %s\n' % self.multiworld.game[player])
for f_option, option in self.multiworld.worlds[player].options_dataclass.type_hints.items():
write_option(f_option, option)
AutoWorld.call_single(self.multiworld, "write_spoiler_header", player, outfile)
if self.entrances:
outfile.write('\n\nEntrances:\n\n')
outfile.write('\n'.join(['%s%s %s %s' % (f'{self.multiworld.get_player_name(entry["player"])}: '
if self.multiworld.players > 1 else '', entry['entrance'],
'<=>' if entry['direction'] == 'both' else
'<=' if entry['direction'] == 'exit' else '=>',
entry['exit']) for entry in self.entrances.values()]))
AutoWorld.call_all(self.multiworld, "write_spoiler", outfile)
locations = [(str(location), str(location.item) if location.item is not None else "Nothing")
for location in self.multiworld.get_locations() if location.show_in_spoiler]
outfile.write('\n\nLocations:\n\n')
outfile.write('\n'.join(
['%s: %s' % (location, item) for location, item in locations]))
outfile.write('\n\nPlaythrough:\n\n')
outfile.write('\n'.join(['%s: {\n%s\n}' % (sphere_nr, '\n'.join(
[f" {location}: {item}" for (location, item) in sphere.items()] if isinstance(sphere, dict) else
[f" {item}" for item in sphere])) for (sphere_nr, sphere) in self.playthrough.items()]))
if self.unreachables:
outfile.write('\n\nUnreachable Items:\n\n')
outfile.write(
'\n'.join(['%s: %s' % (unreachable.item, unreachable) for unreachable in self.unreachables]))
if self.paths:
outfile.write('\n\nPaths:\n\n')
path_listings = []
for location, path in sorted(self.paths.items()):
path_lines = []
for region, exit in path:
if exit is not None:
path_lines.append("{} -> {}".format(region, exit))
else:
path_lines.append(region)
path_listings.append("{}\n {}".format(location, "\n => ".join(path_lines)))
outfile.write('\n'.join(path_listings))
AutoWorld.call_all(self.multiworld, "write_spoiler_end", outfile)
class Tutorial(NamedTuple):
"""Class to build website tutorial pages from a .md file in the world's /docs folder. Order is as follows.
Name of the tutorial as it will appear on the site. Concise description covering what the guide will entail.
Language the guide is written in. Name of the file ex 'setup_en.md'. Name of the link on the site; game name is
filled automatically so 'setup/en' etc. Author or authors."""
tutorial_name: str
description: str
language: str
file_name: str
link: str
authors: List[str]
class PlandoOptions(IntFlag):
none = 0b0000
items = 0b0001
connections = 0b0010
texts = 0b0100
bosses = 0b1000
@classmethod
def from_option_string(cls, option_string: str) -> PlandoOptions:
result = cls(0)
for part in option_string.split(","):
part = part.strip().lower()
if part:
result = cls._handle_part(part, result)
return result
@classmethod
def from_set(cls, option_set: Set[str]) -> PlandoOptions:
result = cls(0)
for part in option_set:
result = cls._handle_part(part, result)
return result
@classmethod
def _handle_part(cls, part: str, base: PlandoOptions) -> PlandoOptions:
try:
return base | cls[part]
except Exception as e:
raise KeyError(f"{part} is not a recognized name for a plando module. "
f"Known options: {', '.join(str(flag.name) for flag in cls)}") from e
def __str__(self) -> str:
if self.value:
return ", ".join(str(flag.name) for flag in PlandoOptions if self.value & flag.value)
return "None"
seeddigits = 20
def get_seed(seed: Optional[int] = None) -> int:
if seed is None:
random.seed(None)
return random.randint(0, pow(10, seeddigits) - 1)
return seed
from worlds import AutoWorld
auto_world = AutoWorld.World