Archipelago/worlds/sm/variaRandomizer/graph/graph.py

414 lines
18 KiB
Python
Raw Normal View History

import copy, logging
from operator import attrgetter
2023-04-08 20:52:34 +00:00
from ..utils import log
from ..logic.smbool import SMBool, smboolFalse
from ..utils.parameters import infinity
from ..logic.helpers import Bosses
class Path(object):
__slots__ = ( 'path', 'pdiff', 'distance' )
def __init__(self, path, pdiff, distance):
self.path = path
self.pdiff = pdiff
self.distance = distance
class AccessPoint(object):
# name : AccessPoint name
# graphArea : graph area the node is located in
# transitions : intra-area transitions
# traverse: traverse function, will be wand to the added transitions
# exitInfo : dict carrying vanilla door information : 'DoorPtr': door address, 'direction', 'cap', 'screen', 'bitFlag', 'distanceToSpawn', 'doorAsmPtr' : door properties
# entryInfo : dict carrying forced samus X/Y position with keys 'SamusX' and 'SamusY'.
# (to be updated after reading vanillaTransitions and gather entry info from matching exit door)
# roomInfo : dict with 'RoomPtr' : room address, 'area'
# shortName : short name for the credits
# internal : if true, shall not be used for connecting areas
def __init__(self, name, graphArea, transitions,
traverse=lambda sm: SMBool(True),
exitInfo=None, entryInfo=None, roomInfo=None,
internal=False, boss=False, escape=False,
start=None,
dotOrientation='w'):
self.Name = name
self.GraphArea = graphArea
self.ExitInfo = exitInfo
self.EntryInfo = entryInfo
self.RoomInfo = roomInfo
self.Internal = internal
self.Boss = boss
self.Escape = escape
self.Start = start
self.DotOrientation = dotOrientation
self.intraTransitions = self.sortTransitions(transitions)
self.transitions = copy.copy(self.intraTransitions)
self.traverse = traverse
self.distance = 0
# inter-area connection
self.ConnectedTo = None
def __copy__(self):
exitInfo = copy.deepcopy(self.ExitInfo) if self.ExitInfo is not None else None
entryInfo = copy.deepcopy(self.EntryInfo) if self.EntryInfo is not None else None
roomInfo = copy.deepcopy(self.RoomInfo) if self.RoomInfo is not None else None
start = copy.deepcopy(self.Start) if self.Start is not None else None
# in any case, do not copy connections
return AccessPoint(self.Name, self.GraphArea, self.intraTransitions, self.traverse,
exitInfo, entryInfo, roomInfo,
self.Internal, self.Boss, self.Escape,
start, self.DotOrientation)
def __str__(self):
return "[" + self.GraphArea + "] " + self.Name
def __repr__(self):
return self.Name
def sortTransitions(self, transitions=None):
# sort transitions before the loop in getNewAvailNodes.
# as of python3.7 insertion order is guaranteed in dictionaires.
if transitions is None:
transitions = self.transitions
return { key: transitions[key] for key in sorted(transitions.keys()) }
# connect to inter-area access point
def connect(self, destName):
self.disconnect()
if self.Internal is False:
self.transitions[destName] = self.traverse
self.ConnectedTo = destName
else:
raise RuntimeError("Cannot add an internal access point as inter-are transition")
self.transitions = self.sortTransitions()
def disconnect(self):
if self.ConnectedTo is not None:
if self.ConnectedTo not in self.intraTransitions:
del self.transitions[self.ConnectedTo]
else:
self.transitions[self.ConnectedTo] = self.intraTransitions[self.ConnectedTo]
self.ConnectedTo = None
# tells if this node is to connect areas together
def isArea(self):
return not self.Internal and not self.Boss and not self.Escape
# used by the solver to get area and boss APs
def isInternal(self):
return self.Internal or self.Escape
def isLoop(self):
return self.ConnectedTo == self.Name
class AccessGraph(object):
__slots__ = ( 'log', 'accessPoints', 'InterAreaTransitions',
'EscapeAttributes', 'apCache', '_useCache',
'availAccessPoints' )
def __init__(self, accessPointList, transitions, dotFile=None):
2023-03-25 18:30:38 +00:00
self.log = log.get('Graph')
self.accessPoints = {}
self.InterAreaTransitions = []
self.EscapeAttributes = {
'Timer': None,
'Animals': None
}
for ap in accessPointList:
self.addAccessPoint(ap)
for srcName, dstName in transitions:
self.addTransition(srcName, dstName)
if dotFile is not None:
self.toDot(dotFile)
self.apCache = {}
self._useCache = False
# store the avail access points to display in vcr
self.availAccessPoints = {}
def useCache(self, use):
self._useCache = use
if self._useCache:
self.resetCache()
def resetCache(self):
self.apCache = {}
def printGraph(self):
if self.log.getEffectiveLevel() == logging.DEBUG:
self.log.debug("Area graph:")
for s, d in self.InterAreaTransitions:
self.log.debug("{} -> {}".format(s.Name, d.Name))
def addAccessPoint(self, ap):
ap.distance = 0
self.accessPoints[ap.Name] = ap
def toDot(self, dotFile):
colors = ['red', 'blue', 'green', 'yellow', 'skyblue', 'violet', 'orange',
'lawngreen', 'crimson', 'chocolate', 'turquoise', 'tomato',
'navyblue', 'darkturquoise', 'green', 'blue', 'maroon', 'magenta',
'bisque', 'coral', 'chartreuse', 'chocolate', 'cyan']
with open(dotFile, "w") as f:
f.write("digraph {\n")
f.write('size="30,30!";\n')
f.write('rankdir=LR;\n')
f.write('ranksep=2.2;\n')
f.write('overlap=scale;\n')
f.write('edge [dir="both",arrowhead="box",arrowtail="box",arrowsize=0.5,fontsize=7,style=dotted];\n')
f.write('node [shape="box",fontsize=10];\n')
for area in set([ap.GraphArea for ap in self.accessPoints.values()]):
f.write(area + ";\n") # TODO area long name and color
drawn = []
i = 0
for src, dst in self.InterAreaTransitions:
if src.Name in drawn:
continue
f.write('%s:%s -> %s:%s [taillabel="%s",headlabel="%s",color=%s];\n' % (src.GraphArea, src.DotOrientation, dst.GraphArea, dst.DotOrientation, src.Name, dst.Name, colors[i]))
drawn += [src.Name,dst.Name]
i += 1
f.write("}\n")
def addTransition(self, srcName, dstName, both=True):
src = self.accessPoints[srcName]
dst = self.accessPoints[dstName]
src.connect(dstName)
self.InterAreaTransitions.append((src, dst))
if both is True:
self.addTransition(dstName, srcName, False)
# availNodes: all already available nodes
# nodesToCheck: nodes we have to check transitions for
# smbm: smbm to test logic on. if None, discard logic check, assume we can reach everything
# maxDiff: difficulty limit
# return newly opened access points
def getNewAvailNodes(self, availNodes, nodesToCheck, smbm, maxDiff, item=None):
newAvailNodes = {}
# with python >= 3.6 the insertion order in a dict is keeps when looping on the keys,
# so we no longer have to sort them.
for src in nodesToCheck:
for dstName in src.transitions:
dst = self.accessPoints[dstName]
if dst in availNodes or dst in newAvailNodes:
continue
if smbm is not None:
if self._useCache == True and (src, dst, item) in self.apCache:
diff = self.apCache[(src, dst, item)]
else:
tFunc = src.transitions[dstName]
diff = tFunc(smbm)
if self._useCache == True:
self.apCache[(src, dst, item)] = diff
else:
diff = SMBool(True)
if diff.bool and diff.difficulty <= maxDiff:
if src.GraphArea == dst.GraphArea:
dst.distance = src.distance + 0.01
else:
dst.distance = src.distance + 1
newAvailNodes[dst] = { 'difficulty': diff, 'from': src }
#self.log.debug("{} -> {}: {}".format(src.Name, dstName, diff))
return newAvailNodes
# rootNode: starting AccessPoint instance
# smbm: smbm to test logic on. if None, discard logic check, assume we can reach everything
# maxDiff: difficulty limit.
# smbm: if None, discard logic check, assume we can reach everything
# return available AccessPoint list
def getAvailableAccessPoints(self, rootNode, smbm, maxDiff, item=None):
availNodes = { rootNode : { 'difficulty' : SMBool(True, 0), 'from' : None } }
newAvailNodes = availNodes
rootNode.distance = 0
while len(newAvailNodes) > 0:
newAvailNodes = self.getNewAvailNodes(availNodes, newAvailNodes, smbm, maxDiff, item)
availNodes.update(newAvailNodes)
return availNodes
# gets path from the root AP used to compute availAps
def getPath(self, dstAp, availAps):
path = []
root = dstAp
while root != None:
path = [root] + path
root = availAps[root]['from']
return path
def getAvailAPPaths(self, availAccessPoints, locsAPs):
paths = {}
for ap in availAccessPoints:
if ap.Name in locsAPs:
path = self.getPath(ap, availAccessPoints)
pdiff = SMBool.wandmax(*(availAccessPoints[ap]['difficulty'] for ap in path))
paths[ap.Name] = Path(path, pdiff, len(path))
return paths
def getSortedAPs(self, paths, locAccessFrom):
ret = []
for apName in locAccessFrom:
path = paths.get(apName, None)
if path is None:
continue
difficulty = paths[apName].pdiff.difficulty
ret.append((difficulty if difficulty != -1 else infinity, path.distance, apName))
ret.sort()
return [apName for diff, dist, apName in ret]
# locations: locations to check
# items: collected items
# maxDiff: difficulty limit
# rootNode: starting AccessPoint
# return available locations list, also stores difficulty in locations
def getAvailableLocations(self, locations, smbm, maxDiff, rootNode='Landing Site'):
rootAp = self.accessPoints[rootNode]
self.availAccessPoints = self.getAvailableAccessPoints(rootAp, smbm, maxDiff)
availAreas = set([ap.GraphArea for ap in self.availAccessPoints.keys()])
availLocs = []
# get all the current locations APs first to only compute these paths
locsAPs = set()
for loc in locations:
for ap in loc.AccessFrom:
locsAPs.add(ap)
# sort availAccessPoints based on difficulty to take easier paths first
availAPPaths = self.getAvailAPPaths(self.availAccessPoints, locsAPs)
for loc in locations:
if loc.GraphArea not in availAreas:
loc.distance = 30000
loc.difficulty = smboolFalse
#if loc.Name == "Kraid":
# print("loc: {} locDiff is area nok".format(loc.Name))
continue
locAPs = self.getSortedAPs(availAPPaths, loc.AccessFrom)
if len(locAPs) == 0:
loc.distance = 40000
loc.difficulty = smboolFalse
#if loc.Name == "Kraid":
# print("loc: {} no aps".format(loc.Name))
continue
for apName in locAPs:
if apName == None:
loc.distance = 20000
loc.difficulty = smboolFalse
#if loc.Name == "Kraid":
# print("loc: {} ap is none".format(loc.Name))
break
tFunc = loc.AccessFrom[apName]
ap = self.accessPoints[apName]
tdiff = tFunc(smbm)
#if loc.Name == "Kraid":
# print("{} root: {} ap: {}".format(loc.Name, rootNode, apName))
if tdiff.bool == True and tdiff.difficulty <= maxDiff:
diff = loc.Available(smbm)
if diff.bool == True:
path = availAPPaths[apName].path
#if loc.Name == "Kraid":
# print("{} path: {}".format(loc.Name, [a.Name for a in path]))
pdiff = availAPPaths[apName].pdiff
(allDiff, locDiff) = self.computeLocDiff(tdiff, diff, pdiff)
if allDiff.bool == True and allDiff.difficulty <= maxDiff:
loc.distance = ap.distance + 1
loc.accessPoint = apName
loc.difficulty = allDiff
loc.path = path
# used only by solver
loc.pathDifficulty = pdiff
loc.locDifficulty = locDiff
availLocs.append(loc)
#if loc.Name == "Kraid":
# print("{} diff: {} tdiff: {} pdiff: {}".format(loc.Name, diff, tdiff, pdiff))
break
else:
loc.distance = 1000 + tdiff.difficulty
loc.difficulty = smboolFalse
#if loc.Name == "Kraid":
# print("loc: {} allDiff is false".format(loc.Name))
else:
loc.distance = 1000 + tdiff.difficulty
loc.difficulty = smboolFalse
#if loc.Name == "Kraid":
# print("loc: {} allDiff is false".format(loc.Name))
else:
loc.distance = 10000 + tdiff.difficulty
loc.difficulty = smboolFalse
#if loc.Name == "Kraid":
# print("loc: {} tdiff is false".format(loc.Name))
if loc.difficulty is None:
#if loc.Name == "Kraid":
# print("loc: {} no difficulty in loc".format(loc.Name))
loc.distance = 100000
loc.difficulty = smboolFalse
#if loc.Name == "Kraid":
# print("loc: {}: {}".format(loc.Name, loc))
#print("availableLocs: {}".format([loc.Name for loc in availLocs]))
return availLocs
# test access from an access point to another, given an optional item
def canAccess(self, smbm, srcAccessPointName, destAccessPointName, maxDiff, item=None):
if item is not None:
smbm.addItem(item)
#print("canAccess: item: {}, src: {}, dest: {}".format(item, srcAccessPointName, destAccessPointName))
destAccessPoint = self.accessPoints[destAccessPointName]
srcAccessPoint = self.accessPoints[srcAccessPointName]
availAccessPoints = self.getAvailableAccessPoints(srcAccessPoint, smbm, maxDiff, item)
can = destAccessPoint in availAccessPoints
# if not can:
# self.log.debug("canAccess KO: avail = {}".format([ap.Name for ap in availAccessPoints.keys()]))
if item is not None:
smbm.removeItem(item)
#print("canAccess: {}".format(can))
return can
# returns a list of AccessPoint instances from srcAccessPointName to destAccessPointName
# (not including source ap)
# or None if no possible path
def accessPath(self, smbm, srcAccessPointName, destAccessPointName, maxDiff):
destAccessPoint = self.accessPoints[destAccessPointName]
srcAccessPoint = self.accessPoints[srcAccessPointName]
availAccessPoints = self.getAvailableAccessPoints(srcAccessPoint, smbm, maxDiff)
if destAccessPoint not in availAccessPoints:
return None
return self.getPath(destAccessPoint, availAccessPoints)
# gives theoretically accessible APs in the graph (no logic check)
def getAccessibleAccessPoints(self, rootNode='Landing Site'):
rootAp = self.accessPoints[rootNode]
inBossChk = lambda ap: ap.Boss and ap.Name.endswith("In")
allAreas = {dst.GraphArea for (src, dst) in self.InterAreaTransitions if not inBossChk(dst) and not dst.isLoop()}
self.log.debug("allAreas="+str(allAreas))
nonBossAPs = [ap for ap in self.getAvailableAccessPoints(rootAp, None, 0) if ap.GraphArea in allAreas]
bossesAPs = [self.accessPoints[boss+'RoomIn'] for boss in Bosses.Golden4()] + [self.accessPoints['Draygon Room Bottom']]
return nonBossAPs + bossesAPs
# gives theoretically accessible locations within a base list
# returns locations with accessible GraphArea in this graph (no logic considered)
def getAccessibleLocations(self, locations, rootNode='Landing Site'):
availAccessPoints = self.getAccessibleAccessPoints(rootNode)
self.log.debug("availAccessPoints="+str([ap.Name for ap in availAccessPoints]))
return [loc for loc in locations if any(ap.Name in loc.AccessFrom for ap in availAccessPoints)]
class AccessGraphSolver(AccessGraph):
def computeLocDiff(self, tdiff, diff, pdiff):
# tdiff: difficulty from the location's access point to the location's room
# diff: difficulty to reach the item in the location's room
# pdiff: difficulty of the path from the current access point to the location's access point
# in output we need the global difficulty but we also need to separate pdiff and (tdiff + diff)
locDiff = SMBool.wandmax(tdiff, diff)
allDiff = SMBool.wandmax(locDiff, pdiff)
return (allDiff, locDiff)
class AccessGraphRando(AccessGraph):
def computeLocDiff(self, tdiff, diff, pdiff):
allDiff = SMBool.wandmax(tdiff, diff, pdiff)
return (allDiff, None)